Definition: The **rank** of a matrix is the number of nonzero rows in its REF or RREF.

solvable

Fact: If a system is consistent then: rank+(# of parameters in solution)=# of variables

Example: Verify the fact for the following system:

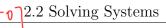
$$\Rightarrow \begin{bmatrix} 1 & 0 & 3 & | & 4 \\ 0 & 1 & 5 & | & 6 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} RREF$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 3 & | & 4 \\ 0 & 1 & 5 & | & 6 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} RREF$$

$$\Rightarrow \begin{cases} 1 & 0 & 3 & | & 4 \\ 0 & 1 & 5 & | & 6 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} RREF$$

$$\Rightarrow \begin{cases} 2 & + 1 & | & 4 & | & 4 \\ 4 & 1 & | & 4 & | & 4 \\ 2$$

Example: Rephrase the fact in terms of columns of the coefficient matrix.



Comment: Notice that $\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a solution to the following system:

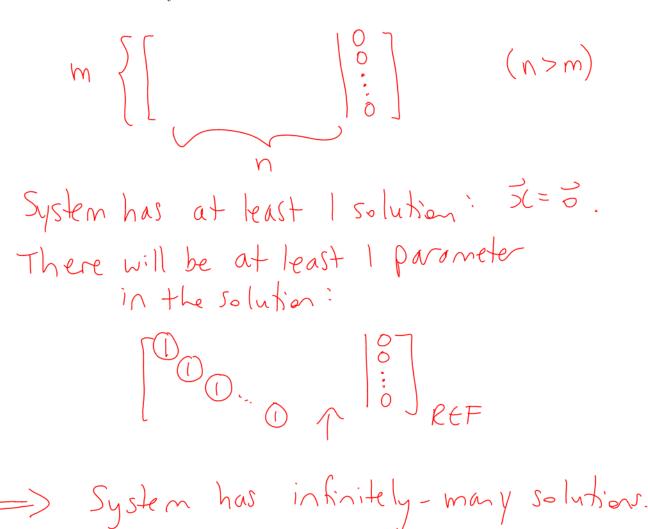
$$x + 2y = 0$$

$$3x + 4y = 0$$

Definition: A system whose constants are all zero is called a **homogeneous system**. The solution $\vec{x} = \vec{0}$ is called the **trivial solution**.

Fact: A homogeneous system always has at least one solution: $\vec{x} = \vec{0}$.

Example: Consider a homogeneous system with more variables than equations. How many solutions does the system have?



2.3 Span and Linear Independence

Example: Is
$$\begin{bmatrix} 8 \\ -10 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$?

Let $C_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + C_2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 8 \\ -10 \end{bmatrix}$

$$\begin{bmatrix} -C_1 \\ 2C_1 \end{bmatrix} + \begin{bmatrix} 2C_2 \\ -3C_2 \end{bmatrix} = \begin{bmatrix} 8 \\ -10 \end{bmatrix}$$

$$\begin{cases} -C_1 + 2C_2 = 8 \\ 2C_1 - 3C_2 = -10 \end{cases}$$

$$\begin{bmatrix} C_1 & C_2 & 8 \\ 2 & -3 & -10 \end{bmatrix}$$

R2-2R₁ [0 1 | 6] REF
System is consistent (solvable) => YES

$$R_1+2R_2$$
 [1 0 147
0 1 | 6] as

Optional:
$$R_{1}+2R_{2} \begin{bmatrix} 1 & 0 & 147 \\ 0 & 1 & | 6 \end{bmatrix} RREF$$

$$C_{1}=4, C_{2}=6$$

$$4\begin{bmatrix} -1 \\ 2 \end{bmatrix} + 6\begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 8 \\ -10 \end{bmatrix}$$

Example: Is
$$\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 a linear combination of $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$?

Let $C_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\begin{bmatrix} C_1 \\ C_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

Refull System is incertisated that the state of the sta

January Contraction of the second of the sec

exactly when

Fact: The vector \vec{b} is a linear combination of the columns of matrix A if and only if the system $A | \vec{b} |$ is consistent.

Definition: The span of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ is the set of all linear combinations of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$.

Comment: a) span $(\vec{a}, \vec{b}) = \{\vec{0}, 3\vec{a}, -7\vec{b}, 2\vec{a} + 5\vec{b}, \ldots\}$

b) span $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n) = \{c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_n\vec{u}_n\}$ where c_1, c_2, \dots, c_n are any real numbers.

Fact: The zero vector $\vec{0}$ is in span $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$ because $0\vec{u}_1 + 0\vec{u}_2 + \dots + 0\vec{u}_n = \vec{0}$.

Suppose à and b are not parallel.

spon(a, b) is a plane:

onig in

A plane can be viewed as a set of vectors, or a set of points (by unvectorizing).

Algebra Language: Gomety Language:

span (a,b,c) ortains o span (a,b,c) ortains the origin