Assignment 1 is an website

Due Thurs Sept 18 at 11:30 am

Submit on DZL

1.4 The Cross Product

The cross product $\vec{u} \times \vec{v}$ is defined for \vec{u} and \vec{v} in \mathbb{R}^3 .

Example: Let $\vec{u} = [1, 2, 1]$ and $\vec{v} = [3, -1, 4]$. Calculate $\vec{u} \times \vec{v}$.

Example: Let $\vec{u} = [1, 2, 1]$ and $\vec{v} = [3, -1, 4]$. Calculate:

a) $\vec{v} \times \vec{u}$

$$3 - 1 \times 4 \times 3 \times -1$$
 $1 \times 1 \times 2$
 $7 \times 7 = [-9, 1, 7]$

b)
$$(\vec{u} \times \vec{v}) \cdot \vec{u}$$

$$\begin{bmatrix} 9,-1,-7 \end{bmatrix} \cdot \begin{bmatrix} 1,7,1 \end{bmatrix} \\
= 9(1) + (-1)(2) + (-7)(1) \\
= 0$$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Then: $\vec{v} \times \vec{u} = -(\vec{u} \times \vec{v})$ AND $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}

Fact: The vector $\vec{u} \times \vec{v}$ is a normal for the plane containing \vec{u} and \vec{v} . The direction of $\vec{u} \times \vec{v}$ is determined by the Right Hand Rule.

Example: Find the general form of the plane through A = (1,3,6), B = (2,1,4) and C = (1,-1,5).

$$\overrightarrow{AB} = [1, -2, -2]$$
 $\overrightarrow{Ac} = [0, -4, -1]$
 $\overrightarrow{Ac} = [-6, 1, -4]$

Normal form
$$\vec{n} \cdot \vec{\chi} = \vec{n} \cdot \vec{p}$$

$$\begin{bmatrix} -6 \end{bmatrix} \cdot \begin{bmatrix} \times \\ -4 \end{bmatrix} \cdot \begin{bmatrix} \times \\ 2 \end{bmatrix} = \begin{bmatrix} -6 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 3 \end{bmatrix}$$
General Form $-6x + y - 4z = -2z$

Comment: Recall that $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$ for \vec{u}, \vec{v} in \mathbb{R}^n .

Fact: If \vec{u} and \vec{v} are in \mathbb{R}^3 then $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$.

Example: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Consider the triangle below. Show that the area of the triangle is $\frac{1}{2}||\vec{u}\times\vec{v}||$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Consider the parallelogram below, which can be divided into two triangles with equal area. Then:

Area(triangle)= $\frac{1}{2}||\vec{u} \times \vec{v}||$ AND

Area(parallelogram)= $||\vec{u} \times \vec{v}||$

Example: Find the area of the triangle determined by $\vec{u} = [1, 4, 5]$ and $\vec{v} = [2, 3, 6]$.

Definition: A matrix is a rectangular array of numbers. For example, $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix}$

Definition: The **determinant** of a matrix A is written det A or |A|. The determinant is only defined for square matrices.

Fact:

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

AND

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} \bigcirc b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Comment: The second formula is called **cofactor expansion**.

Comment: Notice that the second term in the cofactor expansion has a negative sign.

Example: Compute $\det \begin{bmatrix} 1 & 4 & 6 \\ 2 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$

$$= 1 \begin{vmatrix} 1 & 3 \\ 6 & 7 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 0 & 7 \end{vmatrix} + 6 \begin{vmatrix} 2 & 1 \\ 0 & 6 \end{vmatrix}$$

$$= 1 (-11) - 4 (14) + 6 (12)$$

$$= 5$$