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1.4 The Cross Product

1.4 The Cross Product

The cross product @ x ¥ is defined for @ and ¢ in R3.

Example: Let @ =[1,2,1] and ¥ = [3,—1,4]. Calculate 4 x v.
S S

XX
3 -4 3 -

S Te [a) 1) 1-1w) i) =207
= [ -,-7]

Example: Let 4 =[1,2,1] and ¥ = [3, —1,4]. Calculate:
a) U X U
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Fact: Let @ and ¢ be in R3. Then:
U XU =—(ux ) AND
U X v is orthogonal to both 4 and v
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1.4 The Cross Product

Fact: The vector « x v is a normal for the plane containing « and . The direction of u x v/

is det ined by the Right Hand Rule. Z
is determine y/ e Rig and Rule {f%\;\‘
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Example: Find the general form of the plane through A = (1,3,6), B = (2,1,4) and
C=(1,-1,5).
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1.4 The Cross Product

Comment: Recall that @ - ¢ = ||@]] ||U]| cos @ for @, ¢ in R™.
Fact: If @ and ¢ are in R? then || x o]| = ||u]] ||7]| sin 6.

Example: Let @ and ¥ be in R3. Consider the triangle below.
Show that the area of the triangle is $||d x ]|
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Fact: Let @ and @ be in R3. Consider the parallelogram below, which can be divided into

two triangles with equal area. Then:
Area(triangle)= 1||a x ]| AND
Area(parallelogram)= ||u x 7|
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1.4 The Cross Product

Example: Find the area of the triangle determined by @ = [1,4, 5] and ¥ = |2, 3, 6].
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1.4 The Cross Product
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Definition: A matrix is a rectangular array of numbers. For example, A = [2 1 3

Definition: The determinant of a matrix A is written det A or |A|. The determinant is
only defined for square matrices.

Comment: The second formula is called cofactor expansion.

Comment: Notice that the second term in the cofactor expansion has a negative sign.

Example: Compute det
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= 5

36



