Do Suggested HW for Section 1.1
Problems are on DZL.

List of problems and
full solutions are on website.

Definition: Consider the expression: \vec{v} in \mathbb{R}^n . This means that \vec{v} has n components, and each component is a real number.

Example: Draw $\vec{v} = [1, 3, 2]$ in \mathbb{R}^3 .

Definition: The **zero vector** is written $\vec{0}$. Each of its components is zero. The zero vector is useful for algebra.

Example: Write the zero vector in \mathbb{R}^2 and \mathbb{R}^3 .

$$\vec{o} = [o, o] \text{ in } \mathbb{R}^2 \text{ and } \vec{o} = [o, o, o] \text{ in } \mathbb{R}^3$$

Example: Let \vec{u} be in \mathbb{R}^2 . Show (prove) that $\vec{u} + (-\vec{u}) = \vec{0}$.

Let
$$\vec{u} = [u_1, u_2]$$

Start with the more conflicated side.
 $\vec{u} + (-\vec{u}) = [u_1, u_2] + [-u_1, -u_2]$
 $= [u_1 - u_1, u_2]$
 $= [u_1 - u_1, u_2]$
 $= [u_1 - u_2]$

Example: Solve for \vec{x} given that $7\vec{x} - \vec{a} = 3(\vec{a} + 4\vec{x})$.

$$7\vec{x} - \vec{a} = 3\vec{a} + 12\vec{x}$$

 $-5\vec{x} = 4\vec{a}$
 $\vec{x} = -4\vec{a}$

Definition: Consider the statement: \vec{w} is a **linear combination** of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\2 \end{bmatrix}$ with coefficients -3 and 2. This means that $\vec{w} = -3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

Example: Let $\vec{w} = -3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

a) Find \vec{w} algebraically.

$$\overrightarrow{W} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

b) Find \vec{w} geometrically.

Example: Write $\vec{w} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ as a linear combination of $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ by graphing.

Think of I and I as the axes.

$$\sqrt{N} = 4\sqrt{N} - \frac{3}{2}\sqrt{V}$$

We'll do this algebraically in Ch2.

Let [4] = Ci[1] + Cz[2]

System of equations 10

$$k\begin{bmatrix} 0\\2 \end{bmatrix} = \begin{bmatrix} 0\\-3 \end{bmatrix}$$

$$k(2) = -3$$

$$k = -3$$

$$\overline{2}$$

Example: a) Let \vec{u} be a vector of length 5, in standard position, rotated 30° from the positive x-axis. Find \vec{u} algebraically.

b) Let \vec{v} be a vector of length 7, in standard position, rotated 135° from the positive x-axis. Find \vec{v} algebraically.

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector's direction represents the direction of the velocity/acceleration/force. The vector's length represents the magnitude of the velocity/acceleration/force.

Notation: A vector can be written as

\[\vec{u} \text{ or } \vec{u} \text{ or } \vec{u} \in \text{ bold font} \]

Notation: \[\vec{a} \text{ is a vector} \]

\[\vec{a} \text{ is a real number} \]

1.2 Length and Angle

Example: Let $\vec{u} = [1, 4, 2, -9]$ and $\vec{v} = [2, 3, -2, -1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$\vec{u} \cdot \vec{v} = 1(2) + 4(3) + 2(-2) + (-9)(-1)$$
= 19

Example: Calculate:

a)
$$[1,5] \cdot [2,-3]$$

 $= 1(2) + 5(-3)$
 $= -13$

b)
$$[1,5] \cdot [2,-3,0]$$

c)
$$[u_1, u_2] \cdot [u_1, u_2]$$

= $u_1^2 + u_2^2$

Fact: Three Properties of the Dot Product

Let \vec{u}, \vec{v} be in \mathbb{R}^n . Then:

- $1) \ \vec{u} \cdot \vec{u} \ge 0$
- 2) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 3) $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.