1. [4 marks]
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 1 & 0 & 1 \\ 1 & 3 & 3 & 5 \end{bmatrix}$$
 has RREF= $\begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Find a basis for:

- a) the column space of A(1) C(2) A(3) C
- b) the row space of AWe note to rows of the RRFF $B = \{[1 \circ 3 \ 2], [\circ 1 \circ 1]\}$

c) the null space of A

Solve AX = 5, Each parameter produces a

basis vector.

 $\chi_1 + 3\chi_3 + 2\chi_4 = 0$ => $\chi_2 + 3\chi_3 + 2\chi_4 = 0$ => $\chi_2 + 3\chi_3 + 2\chi_4 = 0$ => $\chi_2 + 3\chi_3 + 2\chi_4 = 0$ => $\chi_3 + 3\chi_4 = 0$

2. [5 marks] Let
$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -3x + 8y \\ 2x - 7y \end{bmatrix}$$
.

Let R be the transformation that rotates a vector in \mathbb{R}^2 by 30° clockwise. Find the standard matrix for the transformation that first performs R and then T. Simplify your answer to a single matrix.

$$[T] = \begin{bmatrix} -3 & 8 \\ 2 & -4 \end{bmatrix} \quad \text{(the Gethicients)}$$

$$[R] = \begin{bmatrix} Cos\theta & -sin\theta \\ sin\theta & Gs\theta \end{bmatrix} \theta = -30^{\circ}$$

$$= \frac{1}{2} \begin{bmatrix} \sqrt{3} & 1 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$$

$$[T][R] = \frac{1}{2} \begin{bmatrix} -3 \cdot 8 & -8 & -3 + 8 \cdot 6 \\ 2 \cdot 6 & +7 & 2 - 7 \cdot 6 \end{bmatrix}$$

3. [5 marks] Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ -8 & 2 & 5 \end{bmatrix}$. Find the LU factorization of A.

4. [5 marks] Use Cramer's Rule to find y. Show all your work. (You do not need to find x or z).

$$2x - 3y + 4z = 53$$
$$2x + y + 2z = 85$$
$$-2x + 2y - 2z = -34$$

$$|A| = \begin{vmatrix} 2 & -3 & 4 \\ -2 & 2 & -2 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 3 & 4 \\ -2 & 2 & -2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 2 & 1 \\ -2 & -2 & 1 \end{vmatrix} + 4 \begin{vmatrix} 2 & 1 & 1 \\ -2 & 2 & 1 \end{vmatrix}$$

$$= 2 (-6) + 3(-6) + 4(-6)$$

$$= 12$$

$$|A| = |2 - 3| + 4$$

$$= 2 \left| \frac{85}{34} \cdot \frac{2}{-2} \right| - 53 \left| \frac{2}{-2} \cdot \frac{2}{-2} \right| + 4 \left| \frac{2}{-2} \cdot \frac{85}{-2} \right|$$

$$= 2 \left(\frac{-1}{2} \cdot \frac{2}{-2} \right) - 53 \left(\frac{2}{2} \cdot \frac{2}{-2} \right) + 4 \left(\frac{2}{-2} \cdot \frac{85}{-2} \right)$$

5. [6 marks] a) Find all the eigenvalues of
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$
.

$$|A-AII|=0$$
 $|A-AII|=0$
 $|A-A$

b) Find one eigenvector of
$$A = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$$
 corresponding to $\lambda = 4$.