Example: Find a basis for E_{0} given $A=\left[\begin{array}{llc}4 & 1 & -3 \\ 0 & 0 & 2 \\ 0 & 0 & -3\end{array}\right]$.

$$
\lambda=0
$$

$$
\begin{array}{r}
{\left[\begin{array}{lll}
A-\lambda & I & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
A & 10
\end{array}\right]}
\end{array}
$$

$$
\begin{aligned}
& x_{1}+\frac{1}{4} x_{2}=0 \quad \Rightarrow \quad x_{1}=-\frac{1}{4} t \\
& x_{3}=0 \\
& \text { eigenvectors } \vec{x}=\left[\begin{array}{c}
-1 / 4 \\
1 \\
0
\end{array}\right] t(t \neq 0) \text { or } x=\left[\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right] t(t \neq 0)
\end{aligned}
$$

Fact: Let B be an $n \times n$ matrix. The system $B \vec{x}=\overrightarrow{0}$ has nontrivial solutions exactly when $\operatorname{det} B=0$. (This follows from the Fundamental Theorem of Invertible Matrices).

$$
\text { Section } 3.5
$$

Fact: To find all the eigenvalues of A : \quad Solve the equation $\operatorname{det}(A-\lambda I)=0$.

Example: Let's understand why solving $\operatorname{det}(A-\lambda I)=0$ gives the eigenvalues.

$$
\begin{array}{ll}
& \lambda \text { is an eigenvalue of } A \\
\Leftrightarrow & A \vec{x}=\lambda \vec{x} \text { for } \vec{x} \neq \overrightarrow{0} \\
\Leftrightarrow & (A-\lambda I) \vec{x}=\overrightarrow{0} \text { for } \vec{x} \neq 0 \\
& \Leftrightarrow \operatorname{det}(A-\lambda I)=0
\end{array}
$$

Example: Find all the eigenvalues of $A=\left[\begin{array}{ll}4 & -2 \\ 5 & -7\end{array}\right]$.

$$
\operatorname{det}(A-\lambda I)=0
$$

$$
\left|\begin{array}{cc}
4-\lambda & -2 \\
5 & -7-\lambda
\end{array}\right|=0
$$

$$
\begin{gathered}
(4-\lambda)(-7-\lambda)+10=0 \\
-28-4 \lambda+7 \lambda+\lambda^{2}+10= \\
\lambda^{2}+3 \lambda-18=0 \\
(\lambda+6)(\lambda-3)=0 \\
\lambda=-6,3
\end{gathered}
$$

Example: Find a basis for E_{-6} given $A=\left[\begin{array}{ll}4 & -2 \\ 5 & -7\end{array}\right]$.

$$
t=-6
$$

Comment:
To find eigenvalues: Solve the equation $\operatorname{det}(A-\lambda I)=0$.
To find eigenvectors: Solve the system $[A-\lambda I \mid \overrightarrow{0}]$. Remember to exclude $\vec{x}=\overrightarrow{0}$.

Example: Let $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]$. Find the eigenvectors and eigenvalues geometrically.
In a problem like this, the eigenvectors will be parallel to the x-axis and the y-axis.

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& A \vec{x}=\left[\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{r}
-2 \\
0
\end{array}\right] \\
& =-2\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =-2 \vec{x} \\
& x=-2 \quad \text { eigenerado } \vec{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] t \quad(t \neq 0) \\
& \text { OR Basis for } E_{-2}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \zeta\right. \\
& \text { OR } \quad E_{-2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& \vec{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad A \vec{x}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=1 \vec{x} \\
& \lambda=1 \quad E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

4.2 Determinants

Comment: Recall that the determinant of A is written $\operatorname{det} A$ or $|A|$. It's only defined for square matrices.

Fact: The cofactor expansion from Section 1.4 generalizes according to the following rules: We can expand along any row or column. The sign associated with each term follows the checkerboard pattern: $\left[\begin{array}{cccc}+ & - & + & \ldots \\ - & + & - & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}\right]$.

Example: Find $\operatorname{det} A$ by cofactor expansion along the second column. Calculate it again by cofactor expansion along the third row. Let $A=\left[\begin{array}{lll}4 & 1 & 6 \\ 1 & 2 & 3 \\ 6 & 0 & 7\end{array}\right]$. $2^{\text {nd }}$ Column:

$$
|A|=-1|\quad|+2|\quad|-0 \mid
$$

$$
=-1\left|\begin{array}{ll}
1 & 3 \\
6 & 7
\end{array}\right|+2\left|\begin{array}{ll}
4 & 6 \\
6 & 7
\end{array}\right|
$$

$$
=-1(-11)+2(-8)
$$

$$
\text { 3 rd row: } \quad \begin{aligned}
|A| & \left.=6\left|\begin{array}{ll}
1 & 6 \\
2 & 3
\end{array}\right|-0 \right\rvert\, \\
& =6(-9)+7(7)+7\left|\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right| \\
& =-5
\end{aligned}
$$

Example: Calculate $|A|$ for $\left.A \xlongequal{\left[\left.\begin{array}{llll}1 & 6 & 2 & 37 \\ 0 & 0 & 0 & 4\end{array} \right\rvert\,\right.} \begin{array}{|llll}2 & 1 & 1 & 6 \\ 2 & 0 & 5 & 7\end{array}\right]$.

$$
\left[\begin{array}{l}
+ \\
-+-
\end{array}\right]
$$

$=4[2(4)+5(-11)]$
$=4(-47)$
$=-188$

Example: In this example we'll illustrate the Quick Method for 3×3 Determinants. Calculate $\operatorname{det} A$ using the Quick Method. Let $A=\left[\begin{array}{ccc}1 & 4 & 9 \\ 2 & -2 & 6 \\ 1 & 0 & 4\end{array}\right]$.

$$
|A|=18+0-32-8+24+0=2
$$

Comment: The Quick Method only applies for 3×3 matrices.

