Definition: Suppose we apply T_{1} then T_{2} to \vec{x}. This is a composition of transformations. It can be written $T_{2}\left(T_{1}(\vec{x})\right)$ or $\left(T_{2} \circ T_{1}\right)(\vec{x})$.
We calculate it as $\left[T_{2}\right]\left[T_{1}\right] \vec{x}$.

Example: Let $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}2 x \\ -y\end{array}\right]$. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by 45°. Find $[S \circ T]$.

$$
[T]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \text { coefficients }
$$

$$
[S]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \theta=45^{\circ}
$$

$$
=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$$
[S \circ T]=[S][T]
$$

$$
=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

$$
=\frac{1}{\sqrt{2}}\left[\begin{array}{rrr}
2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right]
$$

Invertible Taste ration;
Definition: Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The inverse of T is a transformation $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that:
$T^{-1}(T(\vec{x}))=\vec{x}$ and $T\left(T^{-1}(\vec{x})\right)=\vec{x}$ for all vectors \vec{x} in \mathbb{R}^{n}. reflection rotation

Non-Inver小ble Trastomation:

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Fact: The standard matrix for T^{-1} is the inverse of the standard matrix for T. Projections

Example: Rewrite this fact using appropriate notation.

$$
\left[T^{-1}\right]=[T]^{-1}
$$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by -30°. Find $\left[T^{-1}\right]$.

Method 1 :

$$
\begin{aligned}
{[T] } & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]_{\theta=-30^{\circ}} \\
& =\left[\begin{array}{cc}
\sqrt{3} / 2 & \frac{1}{2} \\
-\frac{1}{2} & \sqrt{3} / 2
\end{array}\right] \\
\operatorname{det}[T] & =\frac{3}{4}+\frac{1}{4}=1 \\
{\left[T^{-1}\right] } & =[T]^{-1} \\
& =\left[\begin{array}{ll}
\sqrt{3} / 2 & -\frac{1}{2} \\
\frac{1}{2} & \sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

$$
T^{-1} \text { : rotation by } 30^{\circ}
$$

$$
\left[T^{-1}\right]=\left[\begin{array}{cc}
\operatorname{css} \theta & -\sin \theta \\
\sin \theta & 6 \sin \theta
\end{array}\right]_{\theta=30^{\circ}}
$$

$$
=\left[\begin{array}{cc}
\sqrt{3} / 2 & -\frac{1}{2} \\
\frac{1}{2} & \sqrt{3} / 2
\end{array}\right]
$$

Example: Let T be a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2}. Suppose:

$$
T(\vec{u}+\bar{v})=T(\vec{u})+T(\bar{v})
$$

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { and } T\left(\vec{v}_{1}\right)=\left[\begin{array}{c}
-5 \\
8
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { and } T\left(\vec{v}_{2}\right)=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \text { and }
$$

$$
\vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \text { and } T\left(\vec{v}_{3}\right)=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

Find $T\left(\begin{array}{l}7 \\ 3 \\ 6\end{array}\right]$.
let $C_{1} \bar{v}_{1}+C_{2} \bar{v}_{2}+C_{3} \bar{v}_{3}=\left[\begin{array}{l}7 \\ 3 \\ 6\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
c_{1} & c_{2} & c_{3} \\
1 & 1 & 0 & 7 \\
1 & 0 & 1 & 7 \\
0 & 1 & 1 & 3
\end{array}\right] \leadsto\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{c}
c_{1}=2 \\
c_{2}=5 \\
c_{3}=1
\end{array} } \\
& {\left.\left[\begin{array}{l}
7 \\
3 \\
6
\end{array}\right]\right) }=T\left(2 \vec{v}_{1}+S \vec{v}_{2}+\vec{v}_{3}\right) \\
&=T\left(2 \vec{v}_{1}\right)+T\left(S \vec{v}_{2}\right)+T\left(\vec{v}_{3}\right) \\
&=2 T\left(\vec{v}_{1}\right)+S T\left(\vec{v}_{2}\right)+T\left(\vec{v}_{3}\right) \\
&=2\left[\begin{array}{c}
-5 \\
8
\end{array}\right]+S\left[\begin{array}{c}
2 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \\
&=\left[\begin{array}{c}
-1 \\
29
\end{array}\right]
\end{aligned}
$$

Chapter 4: Eigenvalues and Eigenvectors

4.1 Eigenvalues and Eigenvectors, 2×2 Matrices

Definition: Let A be an $n \times n$ matrix. Suppose $A \vec{x}=\lambda \vec{x}$ for some vector $\vec{x} \neq \overrightarrow{0}$ and some real number λ. Then λ is an eigenvalue of A and \vec{x} is an eigenvector of A.

Example: Show that $\vec{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{cc}1 & -3 \\ 1 & 5\end{array}\right]$.

$$
\begin{aligned}
A \rightarrow x & =\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \\
-4
\end{array}\right] \\
& =4\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =A \gg
\end{aligned}
$$

Comment: We say that $\vec{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector of A corresponding to eigenvalue $\lambda=4$.

Comment: Note that $A \overrightarrow{0}=\lambda \overrightarrow{0}$ is trivial. Therefore the zero vector is never considered to be an eigenvector.

Example: Find all eigenvectors of $A=\left[\begin{array}{cc}3 & -2 \\ -3 & 4\end{array}\right]$ corresponding to $\lambda=6$.

y Solve $[A-6 I \mid \overrightarrow{0}]$

$$
A-6 I=\left[\begin{array}{cc}
3 & -2 \\
-3 & 4
\end{array}\right]-6\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
-3 & 4
\end{array}\right]+\left[\begin{array}{cc}
-6 & 0 \\
0 & -6
\end{array}\right]=\left[\begin{array}{c}
-3-2 \\
-3-2
\end{array}\right]
$$

shortest

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
A & -6 I \mid c
\end{array}\right] } \\
& \sim {\left[\begin{array}{cc|c}
-3 & -2 & 0 \\
-3 & -2 & 0
\end{array}\right] } \\
& \sim {\left[\begin{array}{cc|c}
x_{1} & x_{2} & \frac{2}{3} \\
0 & 0 & 0
\end{array}\right]_{\text {REF }} } \\
& \stackrel{R}{x}=\left[\begin{array}{c}
-2 / 3 \\
1
\end{array}\right] t(t \neq 0) \quad \text { or } \quad \begin{array}{l}
x_{2}=t \\
x_{1}=-\frac{2}{3} t \\
\\
x_{x}
\end{array}=\left[\begin{array}{c}
2 \\
-3
\end{array}\right] t \quad(t \neq 0)
\end{aligned}
$$

Fact: To find all the eigenvectors corresponding to eigenvalue λ :
Solve the system $[A-\lambda I \mid \overrightarrow{0}]$. Remember to exclude $\vec{x}=\overrightarrow{0}$.

Definition: The eigenspace E_{λ} is the set of all eigenvectors of A corresponding to eigenvalue λ, plus the zero vector. It's subspace of \mathbb{R}^{n}
line though origin $E_{\lambda}=\left\{\begin{array}{l}\text { eigenvectors } \\ \text { Gorresp }\end{array}\right.$
 Example: Find a basis for E_{3} given $A=\left[\begin{array}{ccc}4 & 1 & -2 \\ -3 & 0 & 6 \\ 2 & 2 & -1\end{array}\right]$. $\cup\{0\}$

$$
\lambda=3
$$

$$
\text { Solve }[A-3 I \mid \stackrel{\rightharpoonup}{0}]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
-3 & -3 & 6 & 0 \\
2 & 2 & -4 & 0
\end{array}\right]} \\
\leadsto\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & \uparrow & 0 & 0
\end{array}\right]_{R R \in F} \\
x_{2}=1
\end{gathered} x_{3}=t .1 \begin{aligned}
& x_{1}=-1+2 t
\end{aligned}
$$

Eigenvectors $\vec{x}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] x+\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]+(\vec{x} \neq 0)$

$$
\text { Basis for } E_{3}=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\}
$$

