Definition: The standard matrix for T is the matrix that performs T. It's written [T].

Fact: Let $T : \mathbb{R}^2 \to \mathbb{R}^m$ be a linear transformation. To calculate [T]: Place $T(\begin{bmatrix} 1\\ 0 \end{bmatrix})$ in the first column and place $T(\begin{bmatrix} 0\\ 1 \end{bmatrix})$ in the second column. In other words, $[T] = \begin{bmatrix} T(\begin{bmatrix} 1\\ 0 \end{bmatrix}) \mid T(\begin{bmatrix} 0\\ 1 \end{bmatrix}) \end{bmatrix}$.

Fact: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then:

$$[T] = \begin{bmatrix} T \\ 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix}) \quad T \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix}) \quad \cdots \quad T \begin{bmatrix} 0 \\ 0 \\ 0 \\ \cdots \\ 1 \end{bmatrix}) \end{bmatrix}.$$

Comment: The formula for [T] works because T is linear. $T(\overline{u}+\overline{v}) = T(\overline{u}) + T(\overline{v})$ and $T(\overline{v}) = CT(\overline{u})$

$$T(\begin{bmatrix} x \\ y \end{bmatrix})$$

$$= T(x[[] + y[])$$

$$= T(x[]) + T(y[])$$

$$= x T([]) + y T([])$$

$$= [T([]) + y T([])]$$

$$= [T([]) T([])] [x']$$

$$= standard$$

$$maxix for T$$

Example: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that reflects a vector in the *y*-axis. Find:

Find [T].

$$T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$[T] = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example: Rotate $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ by 30° clockwise.

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = -30^{\circ} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 5 + 1 \\ -1 + \sqrt{3} \end{bmatrix}$$

Example: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that projects a vector on the line l through the origin with direction vector $\vec{d} = \begin{bmatrix} a \\ b \end{bmatrix}$. Find [T].

$$T\left(\begin{pmatrix} 1\\ 0 \end{pmatrix}\right) = P(0)\left[\begin{smallmatrix} a\\ b \end{matrix}\right] \begin{bmatrix} a\\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} a\\ b \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix}$$
$$= \frac{a}{a^{2}+b^{2}} \begin{bmatrix} a\\ b \end{bmatrix}$$
$$= \frac{1}{a^{2}+b^{2}} \begin{bmatrix} a\\ b \end{bmatrix}$$
$$T\left(\begin{pmatrix} 0\\ 1 \end{bmatrix}\right) = P(0)\left[\begin{smallmatrix} a\\ b \end{bmatrix}\right] \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
$$= \frac{b}{a^{2}+b^{2}} \begin{bmatrix} a\\ b \end{bmatrix}$$
$$= \frac{1}{a^{2}+b^{2}} \begin{bmatrix} a\\ b^{2} \end{bmatrix}$$
$$T\left(\begin{bmatrix} -1\\ 0 \end{bmatrix}\right) = \frac{1}{a^{2}+b^{2}} \begin{bmatrix} a\\ b^{2} \end{bmatrix}$$

Comment: It's recommended that you know the following two standard matrices: Rotation by angle θ (counterclockwise): $[T] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ Projection onto the line $\vec{x} = t \begin{bmatrix} a \\ b \end{bmatrix}$: $[T] = \frac{1}{a^2 + b^2} \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$