Definition: The standard matrix for T is the matrix that performs T. It's written $[T]$.

Fact: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m}$ be a linear transformation. To calculate $[T]$:
Place $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ in the first column and place $\left.T\left(\begin{array}{l}0 \\ 1\end{array}\right]\right)$ in the second column.
In other words, $[T]=\left[\left.T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) \right\rvert\, T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)\right]$.

Fact: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then:
$[T]=\left[T\left(\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \cdots \\ 0\end{array}\right]\right) \quad T\left(\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \ldots \\ 0\end{array}\right]\right) \quad \ldots \quad T\left(\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \ldots \\ 1\end{array}\right]\right)\right]$.

$$
T(\bar{u}+\bar{v})=T(\bar{u})+T(\bar{v})
$$

Comment: The formula for $[T]$ works because T is linear.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =T\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =T\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& \equiv x T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+y T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =\left[T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \begin{array}{l}
\text { standard } \\
\text { matrix for } T
\end{array}
\end{aligned}
$$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector in the y-axis. Find:

$$
\begin{aligned}
& \text { a) }[T] \\
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {[T]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& \text { b) } T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =[T]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{c}
-x \\
y
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\sim x \\
y
\end{array}\right] \cdots\left[\begin{array}{l}
x \\
y \\
\vdots
\end{array}\right]
\end{aligned}
$$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector in the line $y=x$. Find $[T]$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \xrightarrow{T}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {[T]=\left[\left(\begin{array}{l}
0 \\
1
\end{array}\right]\left(\begin{array}{l}
1 \\
0
\end{array}\right]\right.}
\end{aligned}
$$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates a vector by angle θ (counterclockwise). Find $[T]$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right] \\
& {[T]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}
\end{aligned}
$$

Example: Rotate $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ by 30° clockwise.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & 6 \cos \theta
\end{array}\right]_{\theta=-30^{\circ}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] } \\
= & \frac{1}{2}\left[\begin{array}{cc}
\sqrt{3} & 1 \\
-1 & \sqrt{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
= & \frac{1}{2}\left[\begin{array}{c}
\sqrt{3}+1 \\
-1+\sqrt{3}
\end{array}\right]
\end{aligned}
$$

${ }_{S}^{S} \mid A$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that projects a vector on the line l through the origin with direction vector $\vec{d}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Find $[T]$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=P \rho 0 j\left[\begin{array}{l}
a \\
b
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{\left\|\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{a}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}}\left[\begin{array}{l}
a^{2} \\
a b
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=p r o j\left[\begin{array}{l}
a \\
b
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{b}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}}\left[\begin{array}{c}
a b \\
b^{2}
\end{array}\right] \\
& {[T]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{ll}
a^{2} & a b \\
a b & b^{2}
\end{array}\right] \text { Know this }}
\end{aligned}
$$

Comment: It's recommended that you know the following two standard matrices:
Rotation by angle θ (counterclockwise): $\quad[T]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
Projection onto the line $\vec{x}=t\left[\begin{array}{l}a \\ b\end{array}\right]: \quad[T]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{ll}a^{2} & a b \\ a b & b^{2}\end{array}\right]$

