3.6 Linear Transformations

Definition: The standard matrix for 7 is the matrix that performs 7. It’s written [7].

Fact: Let T: R? — R™ be a linear transformation. To calculate [T]:

Place T'( (1) )

In other words, [T] = {T( H)

in the first column and place T'( [ﬂ) in the second column.
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Fact: Let T : R® — R™ be a linear transformation. Then:
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Comment: The formula for [T] works because T is linear. J— ( . _ ( — )
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3.6 Linear Transformations

Example: Let T : R? — R? be the transformation that reflects a vector in the y-axis
Find:

a) [T]

AR

Example: Let T : R? — R? be the transformation that reflects a vector in the line y = x
Find [T7].

([ )=[7]
T[S~ (6]




3.6 Linear Transformations

Example: Let T : R? — R? be the transformation that rotates a vector

by angle 6 (counterclockwise). Find [T]. \
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Example: Rotate [ﬂ by 30° clockwise.
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3.6 Linear Transformations

Example: Let T : R?2 — R? be the transformation that projects a vector

on the line { through the origin with direction vector d = {Z} . Find [T].

[T)= (gi?[i “E] & Loow Fhis

Comment: It’s recommended that you know the following two standard matrices:

. . cosf) —sind
Rotation by angle 6 (counterclockwise): [T = {Sin 0 cosd }
Proiecti he line 7 — ¢ 191 T 1 a’ ab

rojection onto the line ¥ = ik = 5 |ah b2
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