Definition: Given a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n}, the coordinate vector of \vec{v} with respect to \mathcal{B} is
$[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]$ where $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}$.
Example: Find $[\vec{v}]_{\mathcal{B}}$ for $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$ and $\vec{v}=\left[\begin{array}{c}5 \\ 15 \\ 28\end{array}\right]$.
Let $\vec{V}=C_{1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+C_{2}\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right]+C_{3}\left[\begin{array}{l}1 \\ 4\end{array}\right]$

$$
\left[\begin{array}{ccc|c}
C_{1} & C_{2} & C_{3} & 5 \\
1 & 1 & 1 & 15 \\
2 & 5 & 1 & 15 \\
3 & 6 & 4 & 28
\end{array}\right]
$$

\therefore

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{1}=-2 \\
C_{2}=3 \\
c_{3}=4
\end{array}\right.
$$

$$
\left[\begin{array}{ll}
\vec{v}
\end{array}\right]_{B}=\left[\begin{array}{c}
-2 \\
3 \\
4
\end{array}\right]
$$

Definition: The dimension of a subspace S is the number of vectors in a basis for S. It's written $\operatorname{dim}(S)$.

Comment: a) The standard basis for $\mathbb{R}^{3}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Therefore $\operatorname{dim} \mathbb{R}^{3}=3$.
b) $\operatorname{dim} \mathbb{R}^{n}=n$
c) $\operatorname{dim}\left(\right.$ plane through the origin in $\left.\mathbb{R}^{n}\right)=2$
d) $\operatorname{dim}\left(\right.$ line through the origin in $\left.\mathbb{R}^{n}\right)=1$

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.

Comment: For any matrix $A: \operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))$.

Definition: The nullity of a matrix A is the number of parameters in the solution to $A \vec{x}=\overrightarrow{0}$. In other words, $\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{null}(A))$.

Example: Let $A=\left[\begin{array}{llll}1 & 5 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

$$
\begin{aligned}
& \operatorname{rank}(A)=3 \\
& \operatorname{nullity}(A)=1
\end{aligned}
$$

Fact: For any matrix $A: \operatorname{rank}(A)+\operatorname{nullity}(A)=$ number of columns in A.
Example: Let's phrase this fact in terms of the columns of A.

$$
\begin{aligned}
& \binom{\text { \#colomn }}{\text { with pivots }}+\binom{\text { \# glumns }}{\text { without pivots }}=\text { \# } 6 \text { lumns of } A \\
& \text { In Section } 2.2 \text { we said: } \\
& \text { If a system is cosistent then } \\
& \text { (rank of A) + (\# of parameters in solution) = \# of vaiables. }
\end{aligned}
$$

The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:
a) A is invertible.
b) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^{n}.
c) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
d) The RREF of A is I.
e) A is a product of elementary matrices.
f) $\operatorname{rank}(A)=n$.
g) $\operatorname{nullity}(A)=0$.
h) The columns of A are linearly independent.
i) The span of the columns of A is \mathbb{R}^{n}.
j) The columns of A form a basis for \mathbb{R}^{n}.
k) The rows of A are linearly independent.
l) The span of the rows of A is \mathbb{R}^{n}.
m) The rows of A form a basis for \mathbb{R}^{n}.
n) $\operatorname{det} A \neq 0$.
o) 0 is not an eigenvalue of A.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given $n \times n$ matrix, the fifteen statements are all true or all false.

Example: Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

$$
\left[\begin{array}{ll}
+- & + \\
- & - \\
+ & - \\
\hline
\end{array}\right]
$$

$$
\begin{aligned}
|A| & =1\left|\begin{array}{ll}
5 & 6 \\
1 & 4
\end{array}\right|-2\left|\begin{array}{ll}
1 & 6 \\
1 & 4
\end{array}\right|+3\left|\begin{array}{ll}
1 & 5 \\
1 & 1
\end{array}\right| \\
& =1(14)-2(-2)+3(-4) \\
& =6
\end{aligned}
$$

3.6 Linear Transformations

Definition: A transformation is an operation that turns a vector into another vector.

Example: The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates a vector by 90° counterclockwise. Graph the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ before and after the transformation.

Definition: The vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is called the image of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ under T.
We can write $T\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ or $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.

Definition: The matrix transformation T_{A} multiplies a vector on the left by matrix A. In other words, $T_{A}(\vec{x})=A \vec{x}$.

Example: a) Let $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 1 & -3\end{array}\right]$. Find $T_{A}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)$.

$$
=\left[\begin{array}{c}
2 x+z \\
-x+y-3 z
\end{array}\right]
$$

b) Find A given $T_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x+y \\ x-y \\ 3 x+3 y\end{array}\right]$.

$$
A=\left[\begin{array}{rr}
2 & 1 \\
1 & -1 \\
3 & 3
\end{array}\right]
$$

Definition: A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if: $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^{n} and $\quad 2$ nile properties $T(c \vec{u})=c T(\vec{u})$ for all real numbers c and all vectors \vec{u} in \mathbb{R}^{n}.

$$
T(\stackrel{\rightharpoonup}{x})=A \stackrel{\rightharpoonup}{x}
$$

Fact: The transformation T is linear if and only if T is a matrix transformation.
Example: Show that T is linear given $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}y \\ x\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
x
\end{array}\right] } \\
& T \text { is a matrix tasformation } \\
& \Rightarrow T \text { is a linear transformation }
\end{aligned}
$$

Example: Show that T is not linear given $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}y \\ 1+x\end{array}\right]$.

$$
[]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
1+x
\end{array}\right]
$$

No makix M

$$
M\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
1+x
\end{array}\right]
$$

Note: M cannot have variables in it.

Recap of 3.5

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
$$

Find a basis for:
a) $\operatorname{row}(A)$
b) $61(A)$
c) $\operatorname{mull}(A)$
a) $R_{3}-R_{2}\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -2\end{array}\right]_{R \in F}$

Basis fer $\left.\begin{array}{rl}\operatorname{now}(A)=\{ & {\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]}\end{array}\right],\left[\begin{array}{llll}0 & 1 & -1 & 1\end{array}\right]$,
b) $\left[\begin{array}{lll}1(1) & \\ & (-2)\end{array}\right]_{R \in F}$

Use Glumes 1,2,4 of A
Basis lo r $G 1(A)=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ -1\end{array}\right]\right\}$
c)

$$
\operatorname{nu\| }(A)=\left\{\vec{x} \mid A \vec{x}=\overrightarrow{0}_{0}\right\}
$$

$$
\left[\begin{array}{l|l}
A & \overrightarrow{0}
\end{array}\right]
$$

$$
\left[\begin{array}{cc|l}
R \in F & \mid l \\
x_{0} & x_{4} & 0 \\
0
\end{array}\right]
$$

$$
x_{3}=t
$$

$$
\begin{aligned}
x_{1}+x_{3}=0 \Rightarrow x_{1} & =-t \\
x_{2} & =t \\
x_{4} & =0 \\
\vec{x}^{x} & =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] t
\end{aligned}
$$

Basis for hull $(A)=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$

