Definition: Given a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n , the coordinate vector of \vec{v} with respect to \mathcal{B} is

Example: Find
$$[\vec{v}]_{\mathcal{B}}$$
 for $\mathcal{B} = \{\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\5\\6 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \}$ and $\vec{v} = \begin{bmatrix} 5\\15\\28 \end{bmatrix}$.

Let $\vec{V} = C_1 \begin{bmatrix} 2\\3\\3 \end{bmatrix} + C_2 \begin{bmatrix} 5\\4 \end{bmatrix} + C_3 \begin{bmatrix} 1\\4 \end{bmatrix}$

$$\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix} + \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix}$$

$$\begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix}$$

$$\begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix}$$

$$\begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix} \begin{bmatrix} 1\\3\\4 \end{bmatrix}$$

$$\begin{bmatrix} 1\\3\\4 \end{bmatrix}$$

Definition: The **dimension** of a subspace S is the number of vectors in a basis for S. It's written $\dim(S)$.

Comment: a) The standard basis for
$$\mathbb{R}^3 = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$$
. Therefore dim $\mathbb{R}^3 = 3$.

- b) dim $\mathbb{R}^n = n$
- c) dim(plane through the origin in \mathbb{R}^n)= 2
- d) dim(line through the origin in \mathbb{R}^n)=1

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.

Comment: For any matrix A: rank(A) = dim(row(A)) = dim(col(A)).

Definition: The **nullity** of a matrix A is the number of parameters in the solution to $A\vec{x} = \vec{0}$. In other words, $\text{nullity}(A) = \dim(\text{null}(A))$.

Example: Let
$$A = \begin{bmatrix} 1 & 5 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
. Find rank (A) and nullity (A) .

$$\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}$$

Fact: For any matrix A: rank(A) + nullity(A) = number of columns in A.

Example: Let's phrase this fact in terms of the columns of A.

The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a) A is invertible.
- b) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d) The RREF of A is I.

- h) The columns of A are linearly independent.

- k) The rows of A are linearly independent.

- f) rank(A) = n.
 g) nullity(A) = 0.
 h) The columns of A are linearly independent.
 i) The span of the columns of A is \mathbb{R}^n .
 j) The columns of A form a basis for \mathbb{R}^n .
 k) The rows of A are linearly independent.
 l) The span of the rows of A is \mathbb{R}^n .
 rows of A form a basis for \mathbb{R}^n . n) det $A \neq 0$. o) 0 is not an eigenvalue of A.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given $n \times n$ matrix, the fifteen statements are all true or all false.

Example: Is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\5\\6 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\}$$
 a basis for \mathbb{R}^3 ?

$$|A| = 1 \begin{vmatrix} 5 & 6 \\ 1 & 4 \end{vmatrix} - 2 \begin{vmatrix} 1 & 6 \\ 1 & 4 \end{vmatrix} + 3 \begin{vmatrix} 1 & 5 \\ 1 & 1 \end{vmatrix}$$

$$= 1 (14) - 2 (-2) + 3 (-4)$$

$$= 6$$

3.6 Linear Transformations

Definition: A **transformation** is an operation that turns a vector into another vector.

Example: The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates a vector by 90° counterclockwise. Graph the vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ before and after the transformation.

Definition: The vector $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ is called the **image of** $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ **under** T .

We can write $T(\begin{bmatrix} 2\\1 \end{bmatrix}) = \begin{bmatrix} -1\\2 \end{bmatrix}$ or $T\begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}$.

Definition: The **matrix transformation** T_A multiplies a vector on the left by matrix A. In other words, $T_A(\vec{x}) = A\vec{x}$.

Example: a) Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & -3 \end{bmatrix}$$
. Find $T_A \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

$$= A \begin{bmatrix} y \\ y \\ -1 & 1 & -3 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{bmatrix} 2 & x \\ y \\ -1 & 1 & -3 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{bmatrix} 2 & x \\ -1 & 1 & -3 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

b) Find A given
$$T_A(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2x + y \\ x - y \\ 3x + 3y \end{bmatrix}$$
.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ x - y \\ 3x + 3y \end{bmatrix}$$
Gefficients

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 3 & 3 \end{bmatrix}$$

2 nia properties T(x)=Ax

Fact: The transformation T is linear if and only if T is a matrix transformation.

Example: Show that T is linear given $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} y \\ x \end{bmatrix}$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$

Tis a matix transformation

Tis a linear transformation

Example: Show that T is not linear given $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} y \\ 1+x \end{bmatrix}$.

$$\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} y \\ y \\ y \end{bmatrix}$$

No matix M exists so that $M \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 1 + x \end{bmatrix}$

Note: M cannot have variables in it.

Recap of 3.5
$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

Find a basis for:

- a) row(A)
- b) 6 (A)
- c) hull (A)

a)
$$R_{3}-R_{2} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} REF$$

Basis for $now(A) = \mathcal{E}[[1] \circ 1], [0] - [1],$ $[0] \circ [-2]$

b) [O] (D) (E) REF
Use Glumns 1,2,4 of A
Basis for
$$GI(A) = \mathcal{E}[0], [1], [1]$$

c) null (A) =
$$\{\vec{x} \mid A\vec{x} = \vec{0}\}$$

$$\begin{bmatrix} A \mid \vec{0} \end{bmatrix}$$

$$\begin{bmatrix} REF \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{bmatrix} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} | \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \\ \vec{0} \mid \vec{0} \end{bmatrix}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{0} \mid \vec{0} \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \end{aligned}$$

$$\begin{cases} XG \mid \vec{0} \mid \vec{$$