FINAL EXAM
Mon April 15 1:30 pm
(three hows)
$T \in C 174$ and 175

Test 2
Fr. March 1
2.3-2.4, 3.1-3.3 (6 Questions)

Bring calculate r
Bring music learplugs
Practice Problems on website
3.5 Subspaces and Basis Catld

Subspace of \mathbb{R}^{n}

- spar of one or mare vectors
egg. line through origin plane through origh all of \mathbb{R}^{3}

Basis fer a subspace s
= set of direction vectors for s that contains the minimum $\#$ of vectors

Rowspace of a matrix $A=$ span of the rows of A

$$
\text { Clumnspace of a matrix } A=\text { span of the } \text { columns of } A
$$

Example: Let $A=\left[\begin{array}{ccc}2 & 3 & 7 \\ 4 & 7 & 10 \\ 8 & 17 & 8\end{array}\right]$. Find a basis for row (A) consisting of rows of A.
Note: This is different from part a) of the previous example, because that answer was not phrased in terms of rows of A.

$$
\begin{aligned}
& \operatorname{row}(A)=\operatorname{col}\left(A^{T}\right) \\
& \text { Find a basis for GI(AT). } \\
& A^{\top}=\left[\begin{array}{lll}
2 & 4 & 8 \\
3 & 7 & 17 \\
7 & 10 & 8
\end{array}\right] \\
& \frac{R_{1}}{2}\left[\begin{array}{ccc}
1 & 2 & 4 \\
3 & 7 & 17 \\
7 & 10 & 8
\end{array}\right] \\
& \begin{array}{l}
R_{2}-3 R_{1} \\
R_{3}-7 R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & -4 & -20
\end{array}\right] \\
& R_{3}+4 R_{2}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & 8 & 0
\end{array}\right]_{R \in F} \\
& \text { Basis for } G^{\prime}\left(A^{\top}\right)=\left\{\text { Columns } \mid \text { and } 2 \text { of } A^{\top}\right\} \\
& =\left\{\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{l}
4 \\
7 \\
10
\end{array}\right]\right\} \\
& \text { or }\left[\begin{array}{lll}
2 & 3 & 7
\end{array}\right],\left[\begin{array}{lll}
4 & 7 & 10
\end{array}\right]
\end{aligned}
$$

Example: Let $A=\left[\begin{array}{ccc}1 & 4 & 6 \\ 2 & 8 & 12\end{array}\right]$. Find a basis for $\operatorname{null}(A)$.
null (A)

$$
=\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\}
$$

Solve $A \bar{x}=\overrightarrow{0}$ Each parameter
produces a basis vector.

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} \\
1 & 4 & 6 & 0 \\
2 & 8 & 12 & 0
\end{array}\right]} \\
R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 4 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { REF } \\
x_{2}=\left.A\right|_{2} \\
x_{3}=t \\
x_{1}+4 x_{2}+6 x_{3}=0 \Rightarrow x_{1}=-42-6 t \\
\vec{x}=\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-6 \\
0 \\
1
\end{array}\right] t \\
\text { Basis ter null }(A)=\left[\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-6 \\
0 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Example: Find a basis for $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right],\left[\begin{array}{c}1 \\ 5 \\ 24\end{array}\right]\right)$.

$$
A=\left[\begin{array}{cc}
11 & 0 \\
\hline 122 & 6 \\
\hline 1524
\end{array}\right]
$$

Find a basis for $\operatorname{now}(A)$.

$$
\begin{aligned}
& R_{2}-R_{1} \\
& R_{3}-R_{1}
\end{aligned}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 6 \\
0 & 4 & 24
\end{array}\right] R_{3}-4 R_{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{array}\right]_{R \in F} .
$$

Basis for now $(A)=\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & b\end{array}\right]\right\}$
 or $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]>\left[\begin{array}{l}0 \\ 1 \\ 6\end{array}\right]\right\}$

$$
\sim \operatorname{spar}\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
5 \\
24
\end{array}\right]\right)
$$

