$$
\begin{aligned}
& \frac{\text { Test } 2}{\text { FriMar }} \\
& 2.3-2.4,3.1-3.3
\end{aligned}
$$

3.4 LU Factorization

Definition: An upper triangular matrix is a square matrix with zeros below the main diagonal. An example is $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$.

Definition: A lower triangular matrix is a square matrix with zeros above the main diagonal. An example is $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6\end{array}\right]$.

Definition: A unit lower triangular matrix is lower triangular and has ones on the main diagonal. An example is $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5 & 1\end{array}\right]$.

Definition: The LU Factorization of a square matrix A is $A=L U$, where L is a unit lower triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & 4 & 3 \\
8 & 10 & 13
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 6
\end{array}\right]} \\
& A= \\
& L_{\text {unit }}
\end{aligned}
$$

Example: Solve the system below using the LU Factorization on the previous page.
Example:
$\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & 4 & 3 \\ 8 & 10 & 13\end{array}\right] \vec{x}=\left[\begin{array}{c}1 \\ 2 \\ -8\end{array}\right]$
system

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& L_{\underbrace{u \vec{x}}_{\vec{y}}}^{u \vec{b}}
\end{aligned}
$$

(1) Solve $L \vec{y}=\vec{b}$ for \vec{y}
(2) Solve $u \vec{x}=\vec{y}$ for \vec{x}
(1) Solve $L \bar{y}=\vec{b}$

$$
\begin{gathered}
y_{1} y_{2} y_{3} \mid c \\
{\left[\begin{array}{cll|l}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 2 \\
4 & 3 & 1 & -8
\end{array}\right]} \\
y_{1}=1 \\
2 y_{1}+y_{2}=2 \Rightarrow 2+y_{2}=2 \Rightarrow y_{2}=0 \\
4 y_{1}+3 y_{2}+y_{3}=-8 \Rightarrow 4+y_{3}=-8 \Rightarrow y_{3}=-12
\end{gathered}
$$

(2) $\operatorname{Solve}_{x_{1}} x_{2} x_{3} 1 \vec{x}=\vec{y}$

$$
\left.\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & 1 \\
0 & 1 & 1 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 6 & -12
\end{array}\right] \quad \begin{array}{l}
x_{1}=1 \\
x_{2}=1 \\
x_{3}=-2
\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Fact: To find the LU Factorization of a matrix A :
Transform A to REF using only: (current row) -k (pivot row).
The matrix L has the k-values in the appropriate positions.
The matrix U is the REF.
Fact: The matrix A has an LU Factorization if and only if no row swaps are required to transform A to REF.

Example: Find the LU Factorization of $\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & 4 & 3 \\ 8 & 10 & 13\end{array}\right]$

$$
\left.\begin{array}{l}
\begin{array}{l}
R_{2}-2 R_{1} \\
R_{3}-4 R_{1}
\end{array}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 6 & 9
\end{array}\right] k=2 \\
R_{3}-3 R_{2}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 6 \\
R \in F
\end{array}\right.
\end{array} \begin{array}{r}
4+3(2)=0 \\
?=-2
\end{array}\right] \begin{array}{r}
8+?(2)=0 \\
?=-4
\end{array}
$$

appropriate positions

Example: Let's explore why the method to find the LU Factorization works.

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Elementary matrix for $R_{2}-2 R_{1}$:

$$
\begin{aligned}
& E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& E^{-1}=\left[\begin{array}{lll}
1 & \left(R_{2}+2 R_{1}\right) \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

L undoes the operations that tron A into U.
L twas U into A.

$$
L U=A
$$

Example: Find the LU Factorization of A and use it to solve:

$$
\left[\begin{array}{ccc}
2 & -1 \\
3 & -1 \\
-1 & 1 \\
-1 & 2 & 2
\end{array}\right]=\left[\begin{array}{c}
2 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
-5
\end{array}\right]
$$

(1) Find LU
(2) $A \vec{x}=\vec{b} \quad L \forall \vec{x}=\vec{b} \quad$ Solve $\vec{y}=\vec{b}$ fo \vec{y}
(3)

Solve $U \vec{x}=\vec{y}$ for \vec{x}

$$
\begin{aligned}
& \text { (1) }\left[\begin{array}{ccc}
2 & -4 & 0 \\
3 & -1 & 4 \\
-1 & 2 & 2
\end{array}\right] \\
& R_{2}-\frac{3}{2} R_{1}\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & 5 & 4 \\
0 & 0 & 2
\end{array}\right]_{k=\frac{1}{2}}=\begin{array}{l}
3+?(2)=0 \\
R_{3}+\frac{1}{2} R_{1}+?(2)=0 \\
R_{3}+0 R_{2}\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & 5 & 4 \\
0 & 0 & 2
\end{array}\right]_{k=0} \quad L=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 / 2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
\end{array}
\end{aligned}
$$

Example Continued...
(2) Solve $L \vec{y}=\vec{b}$ for \vec{y}

$$
\left.\begin{array}{ccc|c}
y_{1} & y_{2} & y_{3} & 2 \\
1 & 0 & 0 & 0 \\
3 / 2 & 1 & 0 & 0 \\
-y_{2} & 0 & 1 & -5
\end{array}\right] \quad \begin{gathered}
y_{1}=2 \\
\frac{3}{2} y_{1}+y_{2}=0 \Rightarrow 3+y_{2}=0 \Rightarrow y_{2}=-3 \\
-\frac{1}{2} y_{1}+y_{3}=-5 \Rightarrow-1+y_{3}=-5 \Rightarrow y_{3}=-4
\end{gathered}
$$

(3) Solve $u_{x_{1}} x_{2}=\bar{y}$ for \vec{x}

$$
\left.\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & 1 \\
2 & -4 & 0 & 2 \\
0 & 5 & 4 & -3 \\
0 & 0 & 2 & -4
\end{array}\right] \begin{array}{l}
x_{1}=3 \\
x_{2}=1 \\
x_{3}=-2
\end{array}\right]
$$

3.5 Subspaces and Basis
C Set of in ear Combinations

Definition: A subspace of \mathbb{R}^{n} is the span of one or more vectors in \mathbb{R}^{n}.
Comment: a) A line through the origin in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}.

$$
\vec{x}=
$$

b) A line through the origin in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}.

$$
=\operatorname{spas}(\vec{d})
$$

$$
\begin{aligned}
\vec{x} & =t \vec{d} \\
& =\operatorname{spa}(\vec{d})
\end{aligned}
$$

c) A plane through the origin in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}.

$$
\begin{aligned}
\vec{x} & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+s \vec{u}+t \stackrel{\rightharpoonup}{v} \\
& =s \vec{u}+t \vec{v} \\
& =\text { span }(\vec{u}, \vec{v})
\end{aligned}
$$

Example: Is the following set of vectors a subspace of \mathbb{R}^{3} ?

$$
\begin{aligned}
& S=\left\{\left.\begin{array}{l}
{\left[\begin{array}{l}
0 \\
z
\end{array}\right]}
\end{array} \right\rvert\, \begin{array}{l}
3 x+4 y+z=0\} \\
S
\end{array}\right. \\
&=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, z=-3 x-4 y\right\} \\
&=\left\{\left[\begin{array}{c}
x \\
y \\
-3 x-4 y
\end{array}\right]\right\} \\
&=\left\{x\left[\begin{array}{l}
1 \\
0 \\
-3
\end{array}\right]+y\left[\begin{array}{c}
0 \\
1 \\
-4
\end{array}\right]\right\} \\
&=\operatorname{spar}\left(\left[\begin{array}{l}
1 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{c}
0 \\
-4 \\
-4
\end{array}\right]\right\}_{110}
\end{aligned}
$$

