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3.4 LU Factorization

3.4 LU Factorization

Definition: An upper triangular matrix is a square matrix with zeros below the main
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diagonal. An example is |0 5.
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Definition: A lower triangular matrix is a square matrix with zeros above the main
(1 0 0]
3 0f.
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diagonal. An example is
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Definition: A unit lower triangular matrix is lower triangular and has ones on the
1 00

main diagonal. An exampleis [2 1 0].
4 5 1

Definition: The LU Factorization of a square matrix A is A = LU, where L is a unit lower
triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:
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3.4 LU Factorization

Example: Solve the system below using the LU Factorization on the previous page.
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3.4 LU Factorization

Fact: To find the LU Factorization of a matrix A:
Transform A to REF using only: (current row)-k(pivot row).

The matrix L has the k-values in the appropriate positions.
The matrix U is the REF.

Fact: The matrix A has an LU Factorization if and only if no row swaps are required to
transform A to REF.
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Example: Find the LU Factorization of |4 4 3
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3.4 LU Factorization

Example: Let’s explore why the method to find the LU Factorization works.




3.4 LU Factorization

olve:

it to s

Example: Find the LU Factorization of A and use
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3.4 LU Factorization

Example Continued...
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3.5 Subspaces and Basis

3.5 Subspaces and Basis L[ 56_}/ O%@/‘V\\f\?ﬁg% NS

Definition: A subspace of R" is the span of one or more vectors in R™.

Comment: a) A line through the origin in R? is a subspace of R
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) A line through the origin in R3 is a subspace of R3.
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) A plane through the origin in R3 is a subspace of R3.
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Example: Is the following set of vectors a subspace of R3?
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