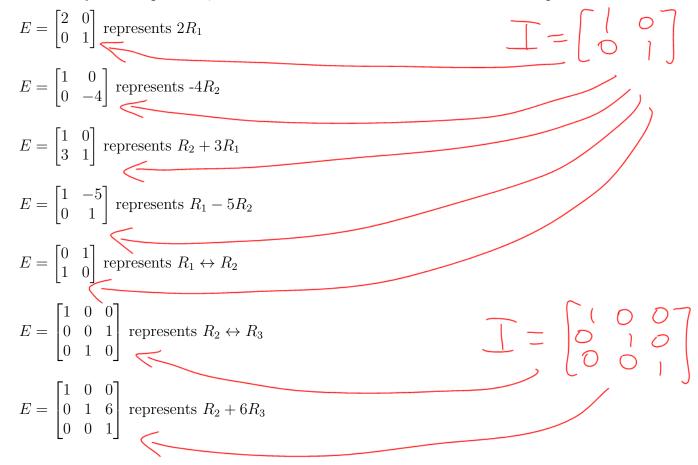
Example: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Find A^{-2} .

$$\begin{pmatrix} A^2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 2 \\ 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 2 \\ 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 &$$

Example: Let A, B and X all be invertible $n \times n$ matrices. Solve for X given $(AX)^{-1} = BA$.

 $\left(\left(AX\right)^{-1}\right)^{-1} = \left(BA\right)^{-1}$ $AX = (BA)^{-1}$ Left multiply by A-1 $A^{-1}AX = A^{-1}(BA)^{-1}$ $X = A^{-1}(BA)^{-1}$ $\nabla = A^{-1} A^{-1} B^{-1}$ $X = A^{-2} B^{-1}$ $X = (BA^2)$ **Definition:** An **elementary matrix** represents a row operation.

To identify which operation, consider how I has been transformed. For example:



Example: State the row operation that is represented by the elementary matrix. Then find the inverse matrix.

 $\widehat{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

a)
$$E_1 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

represents $3R_1$
 $\frac{1}{3}R_1$ undoes it
 $E_1^{-1} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$
b) $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
represents $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$ undoes it
 $E_2^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
c) $E_3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
represents $R_2 + 2R_1$
 $R_2 - 2R_1$ undoes it
 $E_3^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$

Fact: An elementary matrix acts on the <u>left</u> of a matrix. When an elementary matrix is multiplied on the left of A, it performs the associated row operation on A. For example: $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a & 2b \\ c & d \end{bmatrix}.$

Example: Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Write A and A^{-1} as a product of elementary matrices.

$$E_{2}E_{1}A = I$$

$$A^{-1}$$

$$A^{-1} = E_{2}E_{1}$$

$$A^{-1} = (A^{-1})^{-1}$$

$$= (E_{2}E_{1})^{-1}$$

$$= E_{1}^{-1}E_{2}^{-1}$$

Example: Let $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$. Write A and A^{-1} as a product of elementary matrices.

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{2} \\ R_{4} \\ R_{1} \\ R_{4} \\$$

$$E_{4}E_{3}E_{2}E_{1}A = I$$

$$A^{-1} = E_{4}E_{3}E_{2}E_{1}$$

$$A = (A^{-1})^{-1}$$

$$= (E_{4}E_{3}E_{2}E_{1})^{-1}$$

$$= (E_{4}E_{3}E_{2}E_{1})^{-1}$$

$$= E_{1}^{-1}E_{2}^{-1}E_{3}^{-1}E_{4}^{-1}$$

The Fundamental Theorem of Invertible Matrices

- Let A be an $n \times n$ matrix. The following statements are equivalent:
- a) A is invertible.
- b) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d) The RREF of A is I.
- e) A is a product of elementary matrices.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given $n \times n$ matrix, the five statements are **all true** or **all false**

Example: Consider the Fundamental Theorem of Invertible Matrices. Which of the five statements are true for A?

a)
$$A = \begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$$

det $A \neq 0$
=) A is invertible
 $A \parallel s$ statements are true $G = A$.
b) $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
 $d \neq A = 0$
=) A is not invertible
None of the statements
 $G = f + f = G$
 $A = f + f = G$
 $G = G =$