Test 2
Fri Mar 1
$2.3,2.4,3.1-3.3$
6 Questions
Bring calmatar
Bring music/earplugs
Practice Problems on website

Definition: Matrices A and B commute if $A B=B A$.
Example: Let $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 9 \\ 3 & 7\end{array}\right]$. Do A and B commute?

$$
=\left[\begin{array}{cc}
11 & 39 \\
13 & 37
\end{array}\right]
$$

We're going to look at six properties of matrices.
Property 1: For any matrices A, B and C with compatible sizes: $(A B) C=A(B C)$

Example: Verify Property 1 for $A=\left[\begin{array}{ll}1 & 3\end{array}\right], B=\left[\begin{array}{c}2 \\ -4\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 6\end{array}\right]$.

$$
\begin{aligned}
(A B) C= & \left([10]\left[\begin{array}{c}
2 \\
-4
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 6
\end{array}\right] \\
= & {[-10] } \\
= & {[-10-60] }
\end{aligned}
$$

$$
\begin{aligned}
A(B C) & \left.=\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left(\begin{array}{c}
2 \\
-4
\end{array}\right]\left[\begin{array}{ll}
1 & 6
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 12 \\
-4 & -24
\end{array}\right] \\
& =[-10-60]
\end{aligned}
$$

Property 2: For any matrices A, B and C with compatible sizes:
$A(B+C)=A B+A C$
Example: Verify Property 2 for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{l}5 \\ 6\end{array}\right]$ and $C=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

$$
A(B+C)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
8
\end{array}\right]=\left[\begin{array}{l}
22 \\
50
\end{array}\right]
$$

$$
A B+A C=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
17 \\
39
\end{array}\right]+\left[\begin{array}{l}
5 \\
11
\end{array}\right]=\left[\begin{array}{l}
22 \\
50
\end{array}\right]
$$

Properties 3 and 4: For any matrix A :
$A I=A$ and $I A=A$

$$
(\sec +\operatorname{ion} 3.1)
$$

Property 5: For any matrices A and B with compatible sizes:

$$
(A \pm B)^{T}=A^{T} \pm B^{T}
$$

Example: Break Property 5 into two statements.

$$
\begin{aligned}
& (A+B)^{\top}=A^{\top}+B^{\top} \\
& (A-B)^{\top}=A^{\top}-B^{\top}
\end{aligned}
$$

Example: Confirm that $(A-B)^{T}=A^{T}-B^{T}$ for $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 1 & 2\end{array}\right]$.

$$
\begin{aligned}
& (A-B)^{\top}=\left[\begin{array}{cc}
0 & -2 \\
0 & 1
\end{array}\right]^{\top}=\left[\begin{array}{cc}
0 & 0 \\
-2 & 1
\end{array}\right] \\
& A^{\top}-B^{\top}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Example: Confirm that $(A B)^{T}=B^{T} A^{T}$ for $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 1 & 2\end{array}\right]$.

$$
(A B)^{\top}=\left[\begin{array}{ll}
3 & 8 \\
4 & 10
\end{array}\right]^{\top}=\left[\begin{array}{ll}
3 & 4 \\
8 & 10
\end{array}\right]
$$

$B^{\top} A^{\top}=\left[\begin{array}{ll}1 & 1 \\ 4 & 2\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 8 & 10\end{array}\right]$

$$
\begin{aligned}
& \text { Why does the order reverse? } \\
& \text { Transposing reverses rows and columns. }
\end{aligned}
$$

Example: Expand $(A+B)^{2}$ and simplify.

$$
\begin{aligned}
(A+B)^{2} & =(A+B)(A+B) \\
& =A A+A B+B A+B B \\
& =A^{2}+A B+B A+B^{2}
\end{aligned}
$$

Example: Show that $A^{T} A$ is symmetric.
M is symmetric means

$$
M^{\top}=M
$$

(Section 3.1)
$A^{\top} A$
11

$$
\left(A^{\top} A\right)^{\top}=A^{\top} A
$$

Start with the more Gmplicated sidle.

$$
\begin{aligned}
\left(A^{\top} A\right)^{\top} & =A^{\top}\left(A^{\top}\right)^{\top} \quad(\text { Property b) } \\
& =A^{\top} A
\end{aligned}
$$

lg.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad A^{\top} A=\left[\begin{array}{lll}
- & * & \zeta \\
* & 1 & \Delta \\
\vdots & \Delta & \Delta
\end{array}\right]
$$

3.3 The Inverse of a Matrix

Definition: An $n \times n$ matrix A is invertible if there exists a matrix A^{-1} so that $A A^{-1}=I$ and $A^{-1} A=I$.

Definition: The matrix A^{-1} is called the inverse of \mathbf{A}.
Example: Let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$. Confirm that $A^{-1}=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$.

$$
\left.\begin{array}{rl}
A A^{-1}= & {\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]=} \\
A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]= \\
-5 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
5 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=-\quad \frac{\text { Real \# Matrices }}{3 \cdot 3=1 \quad A^{-1} A=I}
$$

Comment: 1) Not every square matrix is invertible.
2) If A^{-1} exists then it is unique. (A matn'x can't have two inverses.)
3) $A A^{-1}=I$ if and only if $A^{-1} A=I$, so we only need to check one property.

