Test 2 Fri Mar I 2.3,2.4, 3.1-3.3 6 Questions Bring calculator Bring music/earplugs Practice Problems on website

**Definition:** Matrices A and B commute if AB = BA.



We're going to look at six properties of matrices.

**Property 1**: For any matrices A, B and C with compatible sizes: (AB)C = A(BC)

**Example:** Verify Property 1 for  $A = \begin{bmatrix} 1 & 3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 & 6 \end{bmatrix}$ .

$$(AB)C = ([1 3] [-4])[1 6]$$
  
=  $[-10][1 6]$   
=  $[-10 - 60]$ 

$$A(BC) = \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{pmatrix} 2 \\ -4 \end{bmatrix} \begin{bmatrix} 1 & 6 \end{bmatrix} )$$
$$= \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 12 \\ -4 & -24 \end{bmatrix}$$
$$= \begin{bmatrix} -10 & -60 \end{bmatrix}$$

**Property 2**: For any matrices A, B and C with compatible sizes: A(B+C) = AB + AC

**Example:** Verify Property 2 for  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ ,  $B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ .  $A (B+C) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 22 \\ 50 \end{bmatrix}$ 

$$AB + AC = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 17 \\ 3q \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 22 \\ 50 \end{bmatrix}$$

**Properties 3 and 4**: For any matrix A: AI = A and IA = A

**Property 5**: For any matrices A and B with compatible sizes:  $(A \pm B)^T = A^T \pm B^T$ 

**Example:** Break Property 5 into two statements.

 $(A+B)' = A^{T} + B^{T}$  $(A-B)^{T} = A^{T} - B^{T}$ 

Example: Confirm that  $(A - B)^T = A^T - B^T$  for  $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix}$ .  $\begin{pmatrix} A - B \end{pmatrix}^T = \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}$ 

$$A - B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}$$

**Property 6**: For any matrices  $A_1, A_2, \ldots, A_n$  with compatible sizes:  $(A_1A_2\cdots A_n)^T = A_n^T\cdots A_2^TA_1^T$ 

**Example:** Confirm that  $(AB)^T = B^T A^T$  for  $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix}$ .

 $(AB)^{T} = \begin{bmatrix} 3 & 8 \\ 4 & 10 \end{bmatrix}^{T} = \begin{bmatrix} 3 & 4 \\ 8 & 10 \end{bmatrix}$ 

$$BA = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 8 & 10 \end{bmatrix}$$
  
Why does the order reverse?  
Transposing reverses rows and clums.

**Example:** Expand  $(A+B)^2$  and simplify.

$$(A+B)^{2} = (A+B)(A+B)$$
$$= AA + AB + BA + BB$$
$$= A^{2} + AB + BA + B^{2}$$

Example: Show that 
$$A^{T}A$$
 is symmetric.  
 $M$  is symmetric means  $M = M$   
 $(Sechion 3.1)$   
 $A^{T}A$   $(A^{T}A)^{T} = A^{T}A$   
 $(A^{T}A)^{T} = A^{T}A$   
 $Start with the more emplicated side.
 $(A^{T}A)^{T} = A^{T}(A^{T})^{T}$  (hoperty 6)  
 $= A^{T}A$   
 $e.g.$   
 $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \end{bmatrix} A^{T} = \begin{bmatrix} 1 & 4 \\ -2 & 5 \\ -3 & 6 \end{bmatrix} A^{T}A = \begin{bmatrix} x & x & 5 \\ x & -4 \\ -2 & 5 \\ -3 & 6 \end{bmatrix}$$ 

## 3.3 The Inverse of a Matrix

**Definition:** An  $n \times n$  matrix A is **invertible** if there exists a matrix  $A^{-1}$  so that  $AA^{-1} = I$  and  $A^{-1}A = I$ .

Definition: The matrix 
$$A^{-1}$$
 is called the inverse of A. Informally: "A Inverse"  
Example: Let  $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ . Confirm that  $A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ .  
 $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
 $A^{-1}A = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
 $A^{-1}A = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
 $\frac{\text{Real } \#}{3 \cdot 3 = 1}$   $A^{-1}A = T$ 

**Comment:** 1) Not every square matrix is invertible. 2) If  $A^{-1}$  exists then it is unique. (A matrix (on '4 have two ) reflect.) 3)  $AA^{-1} = I$  if and only if  $A^{-1}A = I$ , so we only need to check one property.