
2.3 Span and Linear Independence

Comment: To decide if a system is consistent, reduce it to REF.
To solve a system, reduce it to RREF.

Definition: Given {~v1, ~v2, . . . , ~vn}, consider solutions to c1~v1 + c2~v2 + . . .+ cn~vn = ~0. If the
only solution is c1 = c2 = . . . = cn = 0 then the set of vectors is linearly independent.
If there are solutions other than c1 = c2 = . . . = cn = 0 then the set of vectors is linearly
dependent.

Comment: The two sentences below mean the same thing:
Vectors ~v1, ~v2, . . . , ~vn are linearly independent.
The set {~v1, ~v2, . . . , ~vn} is linearly independent.

Comment: The two sentences below mean the same thing:
Vectors ~v1, ~v2, . . . , ~vn are linearly dependent.
The set {~v1, ~v2, . . . , ~vn} is linearly dependent.

63



2.3 Span and Linear Independence

Comment: a) {
[
0
1

]
,

[
2
4

]
,

[
2
7

]
} is linearly dependent.

b)

[
1
0

]
,

[
1
1

]
,

[
3
3

]
are linearly dependent.

c)

[
0
0

]
and

[
1
2

]
are linearly dependent.
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2.3 Span and Linear Independence

Example: Are

1
1
0

 ,
 1

0
−1

 and

0
0
2

 linearly independent?
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2.3 Span and Linear Independence

Fact: A set of more than n vectors in Rn is linearly dependent. For example three vectors
in R2 are guaranteed to be linearly dependent.

Example: Let’s explore why this fact is true.
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2.3 Span and Linear Independence

Example: Find a linear dependence relationship (linear dependency) involving[
1
6

]
,

[
2
6

]
and

[
4
30

]
. Start by letting c1~v1 + c2~v2 + c3~v3 = ~0.
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2.3 Span and Linear Independence

Example: Find a linear dependence relationship (linear dependency) involving[
1
6

]
,

[
2
6

]
and

[
4
30

]
. Start by putting the vectors into the rows of a matrix.
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2.3 Span and Linear Independence

Comment: Compare the methods used in the last two examples. The first method gives
the general solution, while the second method gives one particular solution.

Comment: Preview of Section 3.5:
We’ll consider objects like lines or planes through the origin, and find a set of direction
vectors containing the minimum number of vectors. This discussion will require knowledge
of span and linear independence.
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2.4 Applications of Linear Systems

2.4 Applications of Linear Systems

Example: Find the parabola y = ax2 + bx + c that passes through (1, 12), (−1, 18) and
(2, 30).
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2.4 Applications of Linear Systems

Example: Balance NH3 +O2 → N2 +H2O
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