Comment: To decide if a system is consistent, reduce it to REF. To solve a system, reduce it to RREF.

Definition: Given $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$, consider solutions to $c_1\vec{v}_1 + c_2\vec{v}_2 + \ldots + c_n\vec{v}_n = \vec{0}$. If the only solution is $c_1 = c_2 = \ldots = c_n = 0$ then the set of vectors is **linearly independent**. If there are solutions other than $c_1 = c_2 = \ldots = c_n = 0$ then the set of vectors is **linearly dependent**.

$$(_{1}\overline{V}_{1} + (_{2}\overline{V}_{2} + ... + C_{n}\overline{V}_{n} = \overline{0})$$

$$C_{1} = C_{2} = ... = C_{n} = 0$$

$$C_{1} = C_{2} = ... = C_{n} = 0$$

$$and other$$

$$solutions$$

$$V_{1}, \overline{V}_{2}, ..., \overline{V}_{n}$$

Comment: The two sentences below mean the same thing: Vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ are linearly independent. The set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ is linearly independent.

Comment: The two sentences below mean the same thing: Vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ are linearly dependent. The set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ is linearly dependent.

Example: Are
$$\begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\ 0\\ -1\\ 0\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 0\\ 2\\ 2 \end{bmatrix}$ linearly independent?
Let $C_1 V_1 + C_2 V_2 + C_3 V_3 = 0$
 $\begin{bmatrix} 1 & 1 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_2 - R_1 \begin{bmatrix} 1 & 1 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_2 - R_1 \begin{bmatrix} 1 & 1 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_2 - R_1 \begin{bmatrix} 1 & 1 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_1 - R_2 \begin{bmatrix} 1 & 0 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_3 + R_2 \begin{bmatrix} 1 & 0 & 0 & | & 0\\ 0 & -1 & 2 & | & 0 \end{bmatrix}$
 $R_3 + R_2 = 0$
 $C_1 = 0$
 $C_2 = 0$
 $C_3 = 0$
 Yes

Fact: A set of more than n vectors in \mathbb{R}^n is linearly dependent. For example three vectors in \mathbb{R}^2 are guaranteed to be linearly dependent.

Example: Let's explore why this fact is true.

Suppose $C_1V_1 + C_2V_2 + \dots + mm$ $n \int C_1C_2 \dots C_m \begin{bmatrix} 0\\0\\ \vdots\\0 \end{bmatrix}$ $C_1V_1 + C_2V_2 + \dots + C_mV_m = 0$ (m>n)The system is solvable because $C_1 = C_2 = \dots = C_m = o$ is a solution. RREF: [1], T] At least 1 parameter in solution. => System has infinitely-many solutions CISCIS..., Cm => Vectors are linearly dependent.

Example: Find a linear dependence relationship (linear dependency) involving $\begin{vmatrix} 1 \\ 6 \end{vmatrix}, \begin{vmatrix} 2 \\ 6 \end{vmatrix}$ and $\begin{vmatrix} 4 \\ 30 \end{vmatrix}$. Start by letting $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$. $C_{1}V_{1} + C_{2}V_{2} + C_{3}V_{3} = 0$ $\begin{bmatrix} C_1 & C_2 & C_3 \\ 1 & Z & 4 & 0 \\ 6 & 6 & 30 & 0 \end{bmatrix}$ $R_{2}-6R$, $\begin{bmatrix} 1 & 2 & 4 & | & 0 \\ 0 & -6 & 6 & | & 0 \end{bmatrix}$ $\frac{R_2}{-6} \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$ $R_1 - 2R_2 \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$ $\int_{C_1=t}$ $C_{1} + 6(3=0) = C_{1} = -6t$ $C_2 - (z = 0 =) C_3 = t$ Choose any nonzero t: t=1 $C_1 = -6$ $C_2 = 1$ $C_3 = 1$ $C_{1}V_{1} + C_{2}V_{2} + C_{3}V_{3} = 0$ $-6\vec{v} + \vec{v} + \vec{v} = \vec{0}$

Example: Find a linear dependence relationship (linear dependency) involving $\begin{vmatrix} 1 \\ 6 \end{vmatrix}$, $\begin{vmatrix} 2 \\ 6 \end{vmatrix}$ and $\begin{vmatrix} 4 \\ 30 \end{vmatrix}$. Start by putting the vectors into the rows of a matrix. $\begin{bmatrix} 1 & 6 \\ 2 & 6 \\ 4 & 30 \end{bmatrix}$ T, [1 6] T, -2T, [0 -6] T, -4T, [0 6] $(\vec{v}_2 - \vec{v}_1) + (\vec{v}_2 - 2\vec{v}_1) \begin{bmatrix} 0 & 0 \end{bmatrix}$ Any zero now leads to a linear dependency. $\vec{V}_3 - 4\vec{v}_1 + \vec{V}_2 - 2\vec{v}_1 = \vec{O}$ $-6v_{1} + v_{2} + v_{3} = 0$

Comment: Compare the methods used in the last two examples. The first method gives the general solution, while the second method gives one particular solution.

Comment: Preview of Section 3.5:

We'll consider objects like lines or planes through the origin, and find a set of direction vectors containing the minimum number of vectors. This discussion will require knowledge of span and linear independence.

2.4 Applications of Linear Systems

Example: Find the parabola $y = ax^2 + bx + c$ that passes through (1, 12), (-1, 18) and (2, 30).

y =
$$ax^{2}+bx+c$$

a,b,c are the variables
 $ax^{2}+bx+c = y$
Sub $x=1, y=12$:
 $x=-1, y=18$:
 $x=2, y=30$;
 $4a+2b+c = 30$
 $\begin{bmatrix} 1 & 1 & 1 & 128\\ 4 & 2 & 1 & 30 \end{bmatrix}$
 $a = b = c$
 $\begin{bmatrix} 1 & 0 & 0 & 17\\ -1 & 1 & 188\\ 4 & 2 & 1 & 30 \end{bmatrix}$
 $a = b = c$
 $\begin{bmatrix} 1 & 0 & 0 & 17\\ 0 & 1 & 0 & 18\\ 0 & 0 & 1 & 18 \end{bmatrix}$
 $a = ax^{2}+bx+c$
 $y = 7x^{2}-3x+8$

Example: Balance $NH_3 + O_2 \rightarrow N_2 + H_2O$

	$W NH_3 + x O$	$\gamma_2 \rightarrow \gamma_2$	$N_2 + =$	2 #20
	W, X, Y, Z	ve the v	ianiable.	S
\bigwedge	W = 2y	\Rightarrow	W -7	y = 0
, ,	3w = 2z	=)	3w	-22= 0
Õ .	2x = Z	=)	22	-7= 0
	w x y $\begin{bmatrix} 1 & 0 & -2 \\ 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$	Z 0 0 -2 0 -1 0		
	To Be G	ntinne d		