Example: Find the intersection of the two lines:

$$
\begin{gathered}
\vec{x}=\left[\begin{array}{c}
-5 \\
6 \\
5
\end{array}\right]+s\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \text { and } \vec{x}=\left[\begin{array}{c}
-5 \\
4 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \\
\vdots \\
{\left[\begin{array}{cc|c}
1 & t & \# \\
2 & -1 & 0 \\
1 & -1 & -2 \\
-1 & -1 & -6
\end{array}\right]} \\
R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc|c}
1 & -1 & -2 \\
2 & -1 & 0 \\
-1 & -1 & -6
\end{array}\right] \\
R_{2}-2 R_{1}\left[\begin{array}{cc|c}
1 & -1 & -2 \\
0 & 1 & 4 \\
0 & -2 & -8
\end{array}\right] \\
R_{3}+R_{1} \\
R_{1}+R_{2}\left[\begin{array}{cc|c}
1 & t & 2 \\
1 & 1 & 4 \\
0 & 0 & 0
\end{array}\right] \leftarrow \text { no info } \\
R_{3}+2 R_{2}\left[\begin{array}{c}
\mathcal{L}=2 \\
t=4
\end{array}\right.
\end{gathered}
$$

Sub $s=2$ into $1^{\text {st }}$ line or $t=4$ into $2^{\text {nd }}$ line

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
8 \\
3
\end{array}\right]
$$

Example: How many solutions does the following system have?

$$
\begin{aligned}
& x+k y=1 \\
& k x+y=1 \\
& {\left[\begin{array}{ll|l}
1 & k & 1 \\
k & 1 & 1
\end{array}\right] }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
l \text { solution, if } 1-k^{2} \neq 0 \\
\infty-m a n y, \text { if } k=1 \\
n_{0} \text { solution, if } k=-1
\end{array}\right]
$$

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.
Fact: If a system is consistent then:
rank+(\# of parameters in solution) $=\#$ of variables
Example: Verify the fact for the following system:

Example: Rephrase the fact in terms of columns of the coefficient matrix.

Comment: Notice that $\vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a solution to the following system:

$$
\begin{array}{r}
x+2 y=0 \\
3 x+4 y=0
\end{array}
$$

Definition: A system whose constants are all zero is called a homogeneous system. The solution $\vec{x}=\overrightarrow{0}$ is called the trivial solution.

Fact: A homogeneous system always has at least one solution: $\vec{x}=\overrightarrow{0}$.
Example: Consider a homogeneous system with more variables than equations. How many solutions does the system have?

$2.2 \# 45$
Find the intersection of 2 planes:

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x+2 y+z=-1 \\
2 x-y+4 z=5
\end{array}\right. \\
& \left.\left[\begin{array}{ccc}
x & y & z \\
3 & 2 & 1 \\
2 & -1 & 4
\end{array}\right) 5\right] \\
& \frac{R_{1}}{3}\left[\begin{array}{ccc|c}
1 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
2 & -1 & 4 & 5
\end{array}\right] \\
& R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & -\frac{7}{3} & \frac{10}{3} & \frac{17}{3}
\end{array}\right] \\
& -1-\frac{4}{3} \\
& \frac{-3}{7} \times R_{2} \quad\left[\begin{array}{ccc|c}
1 & \frac{2}{3} & \frac{1}{3} & \frac{-1}{3} \\
0 & 1 & \frac{-10}{7} & \frac{-17}{7}
\end{array}\right] \\
& R_{1}-\frac{2}{3} R_{2}\left[\begin{array}{cc|c}
10 & \frac{\sqrt{9}}{7} & \frac{9}{7} \\
0(1) & -\frac{10}{7} & \frac{-17}{7}
\end{array}\right] \text { REF }
\end{aligned}
$$

$$
\begin{gathered}
\uparrow \\
x+\frac{9}{7} z=\frac{9}{7} \Rightarrow x=\frac{9}{7}-\frac{9}{7} t \\
y-\frac{10}{7} z=\frac{-17}{7} \Rightarrow y=\frac{-17}{7}+\frac{10}{7} t \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 / 7 \\
-17 / 7 \\
0
\end{array}\right]+\left[\begin{array}{c}
-9 / 7 \\
10 / 7 \\
1
\end{array}\right] t}
\end{gathered}
$$

