2.2 Solving Systems

Example: Find the intersection of the two lines:

T

/ —( | -2
RL”lK\ [O |
@3*’@1 ° -2 ‘"?{&
Ql+€1 [7- g 2
o 1 | u
K+, O O O]
4=
b
.



2.2 Solving Systems

Example: How many solutions does the following system have?
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r+ky =1
kx+y = 1
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2.2 Solving Systems

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.
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Fact: If a system is consistent then:
rank—+(# of parameters in solution)=# of variables

Example: Verify the fact for the following system:
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Example: Rephrase the fact in terms of columns of the coefficient matrix.
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2.2 Solving Systems

Comment: Notice that ¥ = {0

0} is a solution to the following system:

r+2y = 0
x+4y = 0

Definition: A system whose constants are all zero is called a homogeneous system. The
solution & = 0 is called the trivial solution.

Fact: A homogeneous system always has at least one solution: = 0.

Example: Consider a homogeneous system with more variables than equations. How many
solutions does the system have?
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