2.1 Linear Systems

Definition: A linear equation in \mathbb{R}^{2} has the form $a x+b y=c$, where a, b and c are real numbers.

Definition: A linear system in \mathbb{R}^{2} consists of two or more linear equations. It's often just called a system.

Comment: Here's an example of a system:

$$
\begin{aligned}
2 x+6 y & =-14 \\
-3 x+3 y & =-15
\end{aligned}
$$

Fact: A system can have: no solution, one unique solution or infinitely-many solutions.

Definition: A system with no solution is called an inconsistent system. (ussolvable) A consistent system has one solution or infinitely-many solutions. In other words, a consistent system is solvable.

Definition: Consider the system:

$$
\begin{aligned}
2 x+6 y & =-14 \\
-3 x+3 y & =-15
\end{aligned}
$$

The matrix $\left[\begin{array}{cc}2 & 6 \\ -3 & 3\end{array}\right]$ is called the coefficient matrix.
The matrix $\left[\begin{array}{cc|c}2 & 6 & -14 \\ -3 & 3 & -15\end{array}\right]$ is called the augmented matrix.

Fact: There are three types of elementary row operations that can be performed on an augmented matrix. These row operations don't change the solution of the system:

1) Swap two rows
2) Multiply or divide a row by a nonzero real number
3) (Current Row) \pm (Pivot Row)

Example: Solve by elimination:

$$
\begin{aligned}
& 2 x+6 y=-14 \\
& -3 x+3 y=-15 \\
& {\left[\begin{array}{ccc}
x & y & \# \\
2 & 6 & -14 \\
-3 & 3 & -15
\end{array}\right]} \\
& \text { Get a 1, "the pivot" } \\
& \frac{R_{1}}{2}\left[\begin{array}{cc|c}
1 & 3 & -7 \\
-3 & 3 & -15
\end{array}\right] \\
& \text { Get o's in rest of Glum } 1 \\
& R_{2}+3 R_{1}\left[\begin{array}{cc|c}
1 & 3 & -7 \\
0 & 12 & -36
\end{array}\right] \\
& \text { Current Row - \# (Pivot Row) } \\
& \text { Get a I, "the pivot" } \\
& \frac{R_{2}}{12}\left[\begin{array}{ll|l}
1 & 3 & -7 \\
0 & 1 & -3
\end{array}\right] \\
& \text { Get } 0 \text { 's in rest of Glum } 2 \\
& R_{1}-3 R_{2} \quad\left[\begin{array}{cc|c}
x & y & H \\
0 & 1 & 2 \\
0 & 1 & -3
\end{array}\right] \\
& \text { Current Row - \# (Pivot Row) } \\
& 1 x+0 y=2 \Rightarrow x=2 \\
& 0 x+1 y=-3 \Rightarrow y=-3 \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]}
\end{aligned}
$$

Example: Solve:

$$
\begin{aligned}
& 2 x-3 y=8 \\
& -4 x+6 y=20 \\
& {\left[\begin{array}{cr|r}
2 & -3 & 8 \\
-4 & 6 & 20
\end{array}\right]} \\
& \begin{array}{c}
\text { Get } \\
\frac{R_{1}}{2}\left[\begin{array}{cc|c}
1 & -\frac{3}{2} & 4 \\
-4 & 6 & 20
\end{array}\right]
\end{array} \\
& \text { Get 0's in Glum) } \\
& R_{2}+4 R_{1}\left[\begin{array}{llll}
0 & 0 & 36
\end{array}\right] \quad \text { Caret } R_{\text {ow }}-7\left(\text { Pivot } R_{\text {at }}\right) \\
& 0 x+O y=36 \text { impossible } \\
& \text { system has no solution. }
\end{aligned}
$$

Fact: A system has no solution if the following type of row appears while performing row operations: [all zeros | nonzero]

Example: Solve:

$$
\begin{aligned}
& O x+0 y=0 \\
& \text { No VINFO }
\end{aligned}
$$

Glum for y has ho pivot.
y is a free variable

$$
\begin{gathered}
y=t \quad(t \text { is a parameter) } \\
1 x-\frac{3}{2} y=4 \Rightarrow x=4+\frac{3}{2} y \Rightarrow x=4+\frac{3}{2} t \\
(y=0+1 t)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]
\end{gathered}
$$

System has infinitely - many solutions.

$$
\begin{aligned}
& 2 x-3 y=8 \\
& -4 x+6 y=-16 \\
& {\left[\begin{array}{cc|c}
2 & -3 & 8 \\
-4 & 6 & -16
\end{array}\right]} \\
& \frac{R_{1}}{2}\left[\begin{array}{cc|c}
1 & -\frac{3}{2} & 4 \\
-4 & 6 & -16
\end{array}\right] \\
& R_{2}+4 R,\left[\begin{array}{cc|c}
x & y & \neq \\
1 & \frac{-3}{2} & 4 \\
\hline 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Example: Solve:

$$
\begin{aligned}
& x=5 \\
& 2 x+3 y=4 \\
& 3 x+4 y=7 \\
& {\left[\begin{array}{ll|l}
1 & 0 & 5 \\
2 & 3 & 4 \\
3 & 4 & 7
\end{array}\right]} \\
& \text { Get o's in rest of 6lumn } 1 \\
& R_{2}-2 R_{1}\left[\begin{array}{cc|c}
1 & 0 & 5 \\
0 & 3 & -6 \\
0 & 4 & -6 \\
R_{3}-3 R_{1}
\end{array}\right] \\
& \frac{R_{2}}{3}\left[\begin{array}{ll|l}
1 & 0 & 5 \\
0 & 1 & -2 \\
0 & 4 & -8
\end{array}\right] \\
& {\left[\begin{array}{cc|c}
1 & 0 & 5 \\
0 & 1 & 5 \\
0 & 0 & -2
\end{array}\right]_{\leftarrow} \text { nointo }} \\
& x=5 \\
& y=-2 \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
s \\
-2
\end{array}\right]} \\
& \text { I unique solution }
\end{aligned}
$$

Definition: Back-substitution is the process of solving a system from the bottom aquadion upwards.

Example: Solve by back-substitution:

$$
\left.\begin{array}{rl}
4 x+y+z & =15 \\
3 y+5 z & =29 \\
2 z & =8
\end{array}\right)
$$

$$
\begin{aligned}
& 2 z=8 \Rightarrow z=4 \\
& 3 y+5 z=29 \Rightarrow 3 y+20=29 \Rightarrow y=3 \\
& 4 x+y+z=15 \Rightarrow 4 x+3+4=15 \Rightarrow x=2 \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] }
\end{aligned}
$$

Comment: Most systems can't be solved by back-substitution.

2.2 Solving Systems

Definition: A matrix is in row-echelon form (REF) if:
any zero rows are at the bottom AND
the leading nonzero entries of each row move down and right
Comment: The following matrices are in REF:
$\left[\begin{array}{ccc}16 & 0 & -1 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{ccc}12 & 3 & -1 \\ 0 & 4 & 7 \\ 0 & 0 & 0\end{array}\right]$

Definition: An augmented matrix is in REF if the coefficient matrix is in REF.
Comment: The following matrices are in REF:
$\left[\begin{array}{ccc|c}6 & 0 & -1 & 1 \\ 0 & 0 & (3 & 2 \\ 0 & 0 & 0 & 3\end{array}\right] \quad\left[\begin{array}{ccc|c}2 & 3 & -1 & 0 \\ 0 & 4 & 7 & 0 \\ 0 & 0 & 0 & 9\end{array}\right]$
Definition: One method of solving a system is Gaussian Elimination. The augmented matrix is transformed to REF using elementary row operations. The system is then solved by back-substitution.

Example: Solve by Gaussian Elimination:

$$
\begin{aligned}
& \begin{aligned}
x+2 y+z & =6 \\
2 x+2 y & =8
\end{aligned} \\
& 3 y+z=8 \\
& {\left[\begin{array}{lll|l}
1 & 2 & 1 & 6 \\
2 & 2 & 0 & 8 \\
0 & 3 & 1 & 8
\end{array}\right]} \\
& R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 6 \\
0 & -2 & -2 & -4 \\
0 & 3 & 1 & 8
\end{array}\right] \\
& \frac{R_{2}}{-2}\left[\begin{array}{lll|l}
1 & 2 & 1 & 6 \\
0 & 1 & 1 & 2 \\
0 & 3 & 1 & 8
\end{array}\right] \\
& R_{3}-3 R_{2}\left[\begin{array}{ccc|c}
1 & y & z & 6 \\
0 & 2 & 1 & 6 \\
0 & 0 & -2 & 2 \\
0 & -2
\end{array}\right] \text { Rt }
\end{aligned}
$$

Back-substitute

$$
\begin{gathered}
-2 z=2 \Rightarrow z=-1 \\
y+z=2 \Rightarrow y-1=2 \Rightarrow y=3 \\
x+2 y+z=6 \Rightarrow x+6-1=6 \Rightarrow x=1 \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]}
\end{gathered}
$$

Definition: A matrix is in reduced row-echelon form (RREF) if: the matrix is in REF,
the leading nonzero entry in each row is 1 , AND
these leading ones have zeros everywhere else in their columns
Comment: The following matrices are in RREF:
$\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Comment: The following matrix is in REF but not RREF:
$\left[\begin{array}{lll}1(1) & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & 0\end{array}\right]$
Definition: An augmented matrix is in RREF if the coefficient matrix is in RREF.
Comment: The following matrices are in RREF:
$\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right] \quad\left[\begin{array}{ccc|c}1 & 5 & 0 & 9 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 9\end{array}\right]$
Definition: Another method of solving a system is Gauss-Jordan Elimination. The augmented matrix is transformed to RREF using elementary row operations. This is typically faster than Gaussian Elimination.

