Test 1
Fri Feb 2

$$
1.1-1.4,2.1-2.2
$$

Definition: A matrix is a rectangular array of numbers. For example, $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -1 & 3\end{array}\right]$
Definition: The determinant of a matrix A is written $\operatorname{det} A$ or $|A|$. The determinant is only defined for square matrices.

Fact:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

AND

$$
\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{cc}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

Comment: The second formula is called cofactor expansion.
Comment: Notice that the second term in the cofactor expansion has a negative sign.
Example: Compute aet $\left[\begin{array}{lll}1 & 4 & 6 \\ 2 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$

Example: Compute $\left.\begin{array}{ccc}-1 & -4 & 6 \\ 1 & 1 & 2 \\ 1 & 1 & 8\end{array} \right\rvert\,$

$$
\begin{aligned}
& =-1\left|\begin{array}{ll}
1 & 2 \\
1 & 8
\end{array}\right|+4\left|\begin{array}{ll}
1 & 2 \\
1 & 8
\end{array}\right|+6\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right| \\
& =-1(6)+4(6)+6(0) \\
& =18
\end{aligned}
$$

Notation: Let:

$$
\begin{aligned}
& \vec{i}=[1,0,0] \\
& \vec{j}=[0,1,0] \\
& \vec{k}=[0,0,1]
\end{aligned}
$$

Fact: A second method of calculating the cross product is:

$$
\left[u_{1}, u_{2}, u_{3}\right] \times\left[v_{1}, v_{2}, v_{3}\right]=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

Example: Calculate $[2,1,3] \times[-6,4,2]$ using the original method.

$$
\begin{aligned}
& 21 x^{3} x^{2} x^{\prime} \\
& -642^{-6}
\end{aligned} \quad[-10,-22,14]
$$

Example: Calculate $[2,1,3] \times[-6,4,2]$ using the second method. Notice why cofactor expansion has a negative sign on the second term.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\mid \vec{L} & \vec{J} & \vec{K} \\
2 & 1 & 3 \\
-6 & 4 & 2
\end{array}\right| \\
= & \vec{L}\left|\begin{array}{cc}
1 & 3 \\
4 & 2
\end{array}\right| \vec{ラ}\left|\begin{array}{cc}
2 & 3 \\
-6 & 2
\end{array}\right|+\vec{K}\left|\begin{array}{cc}
2 & 1 \\
-6 & 4
\end{array}\right| \\
= & \vec{L}(-10)-\vec{J}(22)+\vec{K}(14) \\
= & -10[1,0,0]-22[0,1,0]+14[0,0,1] \\
= & {[-10,-22,14] \quad 37 \text { Glans are out of } \operatorname{arder} \text { in }\left|\begin{array}{cc}
2 & 3 \\
-6 & 2
\end{array}\right| . }
\end{aligned}
$$

Fact: Three geometry formulas:

1) Area(parallelogram in $\left.\mathbb{R}^{3}\right)=\|\vec{u} \times \vec{v}\|$

2) Area(parallelogram in $\left.\mathbb{R}^{2}\right)=$ absolute value of $\operatorname{det}\left[\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right]$

Volume
$\left[\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right]$

or

Example: Find the area of the parallelogram determined by $[1,6]$ and $[3,5]$.

$$
\left.\begin{aligned}
& =1 \quad\left|\begin{array}{ll}
1 & 6 \\
3 & 5
\end{array}\right| \\
& =1-13
\end{aligned} \right\rvert\,
$$

Example: Do the vectors $[1,4,7],[2,5,9]$ and $[1,-2,-3]$ lie in a common plane?

Yes if and any if

$$
V(\text { slanted box })=
$$

$$
\begin{aligned}
V(\text { slanted box }) & =1\left|\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 9 \\
1 & -2 & -3
\end{array}\right| \\
& =1 \quad\left|\begin{array}{cc}
5 & 9 \\
-2 & -3
\end{array}\right|-4\left|\begin{array}{cc}
2 & 9 \\
1 & -3
\end{array}\right|+7\left|\begin{array}{cc}
2 & 5 \\
1 & -2
\end{array}\right| \\
& =1 \left\lvert\, \begin{array}{ll}
1(3)-4(-15)+7(-9) \mid \\
& =1 \\
& =1 \\
& \text { Yes }
\end{array}\right. \text { | } 1
\end{aligned}
$$

Chapter 2: Systems of Linear Equations

2.1 Linear Systems

Definition: A linear equation in \mathbb{R}^{2} has the form $a x+b y=c$, where a, b and c are real numbers.

Definition: A linear system in \mathbb{R}^{2} consists of two or more linear equations. It's often just called a system.

Comment: Here's an example of a system:

$$
\begin{aligned}
2 x+6 y & =-14 \\
-3 x+3 y & =-15
\end{aligned}
$$

Fact: A system can have: no solution, one unique solution or infinitely-many solutions.

Definition: A system with no solution is called an inconsistent system. (unsolvable) A consistent system has one solution or infinitely-many solutions. In other words, a consistent system is solvable.

Definition: Consider the system:

$$
\begin{aligned}
2 x+6 y & =-14 \\
-3 x+3 y & =-15
\end{aligned}
$$

The matrix $\left[\begin{array}{cc}2 & 6 \\ -3 & 3\end{array}\right]$ is called the coefficient matrix.
The matrix $\left[\begin{array}{cc|c}2 & 6 & -14 \\ -3 & 3 & -15\end{array}\right]$ is called the augmented matrix.

