Comment: To find the distance between parallel planes, pick a point on one of the planes. Find the distance between that point and the other plane.

Comment: To find the distance between parallel lines, pick a point on one of the lines. Find the distance between that point and the other line.

Definition: The **angle between planes** is defined as the angle between their normals.

Definition: Parallel planes have parallel normals. Perpendicular planes have perpendicular normals.

Write an equation that describes " ni and nz are parallel" $\vec{n}_{.} = t \vec{n}_{2}$

Write an equation that describes That describes n, is perpendicular to nz 11

1.4 The Cross Product

The cross product $\vec{u} \times \vec{v}$ is defined for \vec{u} and \vec{v} in \mathbb{R}^3 .

Example: Let $\vec{u} = [1, 2, 1]$ and $\vec{v} = [3, -1, 4]$. Calculate $\vec{u} \times \vec{v}$.

$$\begin{aligned} 1 & 2 & 2 \\ 3 & -1 & 4 & 3 & -1 \\ \hline U \times \overline{U} &= [2(4) - 1(-1), 1(3) - 1(4), 1(-1) - 2(3)] \\ &= [9, -1, -7] \end{aligned}$$

Example: Let $\vec{u} = [1, 2, 1]$ and $\vec{v} = [3, -1, 4]$. Calculate: a) $\vec{v} \times \vec{u}$

b) $(\vec{u} \times \vec{v}) \cdot \vec{u}$

$$= [9, -1, -7] \cdot [1, 7, 1]$$

= 9(1) + (-1)(2) + (-7)(1)
= 0

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Then: $\vec{v} \times \vec{u} = -(\vec{u} \times \vec{v})$ AND $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} **Fact:** The vector $\vec{u} \times \vec{v}$ is a normal for the plane containing \vec{u} and \vec{v} . The direction of $\vec{u} \times \vec{v}$ is determined by the Right Hand Rule.

Example: Find the general form of the plane through A = (1,3,6), B = (2,1,4) and C = (1,-1,5).

Comment: Recall that $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$ for \vec{u}, \vec{v} in \mathbb{R}^n .

Fact: If \vec{u} and \vec{v} are in \mathbb{R}^3 then $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$.

Example: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Consider the triangle below. Show that the area of the triangle is $\frac{1}{2}||\vec{u} \times \vec{v}||$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^3 . Consider the parallelogram below, which can be divided into two triangles with equal area. Then: Area(triangle)= $\frac{1}{2}||\vec{u} \times \vec{v}||$ AND Area(parallelogram)= $||\vec{u} \times \vec{v}||$

Example: Find the area of the triangle determined by $\vec{u} = [1, 4, 5]$ and $\vec{v} = [2, 3, 6]$.

