Comment: To find the distance between parallel planes, pick a point on one of the planes. Find the distance between that point and the other plane.

Comment: To find the distance between parallel lines, pick a point on one of the lines. Find the distance between that point and the other line.

Definition: The angle between planes is defined as the angle between their normals.

Definition: Parallel planes have parallel normals. Perpendicular planes have perpendicular normals.

1.4 The Cross Product

The cross product $\vec{u} \times \vec{v}$ is defined for \vec{u} and \vec{v} in \mathbb{R}^{3}.
Example: Let $\vec{u}=[1,2,1]$ and $\vec{v}=[3,-1,4]$. Calculate $\vec{u} \times \vec{v}$.

$$
\begin{aligned}
& 1 \quad 2 \times 1 \times 2 \\
& 3-1+3-1 \\
\vec{u} \times \vec{v}= & {[2(4)-1(-1), 1(3)-1(4), 1(-1)-2(3)] } \\
= & {[9,-1,-7] }
\end{aligned}
$$

Example: Let $\vec{u}=[1,2,1]$ and $\vec{v}=[3,-1,4]$. Calculate:
a) $\vec{v} \times \vec{u}$

$$
\vec{v} \times \vec{u}=[-9,1,7]
$$

b) $(\vec{u} \times \vec{v}) \cdot \vec{u}$

$$
\begin{aligned}
& =[9,-1,-7] \cdot[1,2,1] \\
& =9(1)+(-1)(2)+(-7)(1) \\
& =0
\end{aligned}
$$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^{3}. Then:
$\vec{v} \times \vec{u}=-(\vec{u} \times \vec{v})$
AND
$\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}

Fact: The vector $\vec{u} \times \vec{v}$ is a normal for the plane containing \vec{u} and \vec{v}. The direction of $\vec{u} \times \vec{v}$ is determined by the Right Hand Rule.

Example: Find the general form of the plane through $A=(1,3,6), B=(2,1,4)$ and $C=(1,-1,5)$.

$$
[0,-4,-1]
$$

$$
\overrightarrow{A C} \times \overrightarrow{A B}=[6,-1,4]
$$

\qquad

$$
\vec{n}=[6,-1,4]
$$

Normal form
General Form

$$
\left[\begin{array}{c}
6 \\
\frac{6}{4}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
\frac{2}{z} \\
\hline
\end{array}\right]=\left[\begin{array}{c}
6 \\
-1 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]
$$

$$
\begin{gathered}
6 x-y+4 z=27 \\
\text { or }-6 x+y-4 z=-27
\end{gathered}
$$

Comment: Recall that $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$ for \vec{u}, \vec{v} in \mathbb{R}^{n}.
Fact: If \vec{u} and \vec{v} are in \mathbb{R}^{3} then $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$.
Example: Let \vec{u} and \vec{v} be in \mathbb{R}^{3}. Consider the triangle below.
Show that the area of the triangle is $\frac{1}{2}\|\vec{u} \times \vec{v}\|$

$$
\|\bar{v}\| \sin \theta=h
$$

$$
h=\|\vec{r}\| \sin \theta
$$

$$
\begin{aligned}
A(\text { triangle }) & =\frac{1}{2} b h \\
& =\frac{1}{2}\|\bar{u}\|\|\bar{v}\| \sin \theta
\end{aligned}
$$

$$
=\frac{1}{2}\|\bar{r} \times \bar{r}\|
$$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^{3}. Consider the parallelogram below, which can be divided into two triangles with equal area. Then:
Area $($ triangle $)=\frac{1}{2}\|\vec{u} \times \vec{v}\| \quad$ AND
Area(parallelogram) $=\|\vec{u} \times \vec{v}\|$

Example: Find the area of the triangle determined by $\vec{u}=[1,4,5]$ and $\vec{v}=[2,3,6]$.

$$
\begin{aligned}
\text { Area }(\text { triangle }) & =\frac{1}{2}\|\bar{u} \times \bar{v}\| \\
& =\frac{\sqrt{122}}{2}
\end{aligned}
$$

