Weather updates will be posted at www.camosw.ca

Part 2. Lines in \mathbb{R}^3

Example: Consider the line through P = (2, 1, 12) and Q = (0, -3, 6). Describe the line in both vector and parametric form.

Definition: A plane is an infinite flat surface.

Fact: ax + by + cz = d is the general form for a plane in \mathbb{R}^3 .

Comment: General form for a line in \mathbb{R}^3 is inconvenient so we will omit it. It would consist of two equations, describing the intersection of two planes.

Comment: Similarly we omit normal form for a line in \mathbb{R}^3 .

Part 3. Planes in \mathbb{R}^3

Example: Consider the plane through P = (1, -1, 3) with normal $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$. Describe the plane in both normal and general form.

Definition: The vector form for a plane in \mathbb{R}^3 is $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$ where: \vec{u} and \vec{v} are nonparallel direction vectors s and t represent any real numbers

Example: Consider the plane through P = (6, 0, 0), Q = (0, 6, 0) and R = (0, 0, 3). Describe the plane in vector and parametric form.

direction vectors
$$\vec{u} = \vec{PQ} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

 $\vec{v} = \vec{PR} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$
Vector $\vec{x} = \vec{P} + \vec{su} + \vec{tr}$
vector $\begin{bmatrix} 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} + \vec{s} \begin{bmatrix} 5 \\ 6 \end{bmatrix} + \vec{t} \begin{bmatrix} 5 \\ 3 \end{bmatrix}$
parametric $x=6-6s-6t$, $y=6s$, $z=3t$
Example: Summarize the twelve descriptions
Line in \vec{R} Line in \vec{R} Plane in \vec{R}^3
General $ax+by=c$ $ax+by+(z=d)$
Normal $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$
Vector $\vec{x} = \vec{p} + \vec{td}$ $\vec{x} = \vec{p} + \vec{td}$ $\vec{x} = \vec{p} + \vec{su} + \vec{tr}$
Parametric $\begin{cases} x = \\ y = \\ z = \end{cases}$ $\begin{cases} x = \\ y = \\ z = \end{cases}$

Part 4. Geometry Problems

Example: Find the distance between B = (1, 3, 3) and the plane $\mathcal{P} : x + y + 2z = 7$

Example: Find the distance between B = (1, 1, 0) and the line through A = (0, 1, 2) with $\vec{d} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$ B B d ProjJAB distance = || AB - projdAB || $AB = \begin{bmatrix} 1\\ -2 \end{bmatrix}$ $\mathcal{P}^{(n)}_{J} \overrightarrow{AB} = \frac{\overrightarrow{a} \cdot \overrightarrow{AB}}{||\overrightarrow{a}||^{2}} \overrightarrow{a} = \frac{-1}{2} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\overrightarrow{AB} - \overrightarrow{Pmj} \overrightarrow{AB} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ $= \begin{bmatrix} 3/2 \\ 0 \\ -3/2 \end{bmatrix}$ = $\frac{3}{2}\begin{bmatrix}1\\0\\-\end{bmatrix}$ distance = $|| = \frac{3}{2} \left[\frac{6}{2} \right] ||$ $=\frac{3}{\sqrt{2}}\sqrt{2}$