We're going to recap the outer product expansion of $A B$ from Section 3.1.

Example: Find $\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]\left[\begin{array}{ll}2 & 6 \\ 7 & 8\end{array}\right]$ using the outer product expansion.

$$
\begin{aligned}
& =\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{ll}
5 & 6
\end{array}\right]+\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
7 & 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
5 & 6 \\
15 & 18
\end{array}\right]+\left[\begin{array}{ll}
14 & 16 \\
28 & 32
\end{array}\right] \\
& =\left[\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

Example: Find $\left[\begin{array}{c}-1 \\ 2\end{array} \begin{array}{c}9 \\ 3\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$ using the outer product expansion.

$$
\begin{aligned}
& =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\left[\begin{array}{ll}
4 & 3
\end{array}\right]+\left[\begin{array}{l}
9 \\
3
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-4 & -3 \\
8 & 6
\end{array}\right]+\left[\begin{array}{cc}
18 & 9 \\
6 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
14 & 6 \\
14 & 9
\end{array}\right]
\end{aligned}
$$

Definition: Let A be a symmetric $n \times n$ matrix. Let $\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{n}$ be orthonormal eigenvectors written as columns.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the corresponding eigenvalues.
The spectral decomposition of A is:

$$
A=\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{T}+\lambda_{2} \vec{q}_{2}{\overrightarrow{q_{2}}}^{T}+\ldots+\lambda_{n} \vec{q}_{n} \vec{q}_{n}^{T}
$$

Example: Find a 3×3 matrix A with eigenvalues $\lambda=2$ and $\lambda=3$ so that:

$$
\begin{aligned}
& E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right) \text { and } E_{3}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\right) \text {. } \\
& \text { Eigenvectors are orthogonal - } \\
& \begin{array}{c}
\vec{q}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \vec{q}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \vec{q}_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \\
\text { are orthond malt eigenvectors }
\end{array} \\
& A=\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{\top}+\ldots \\
& =\left(\begin{array}{ll}
2 \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+2 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]\right. \\
& +\frac{\left(3 \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}\right.}{1 / 2}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & -2
\end{array}\right] \\
& =\frac{4}{6}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{6}{6}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{3}{6}\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 1 & -2 \\
-2 & -2 & 4
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
13 & 1 & -2 \\
1 & 13 & -2 \\
-2 & -2 & 16
\end{array}\right]<\text { symmetric } \\
& \text { check: } A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-A\left[\begin{array}{c}
1 \\
194
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-A\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=3\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

Example Continued...

Example: Suppose $Q^{T} A Q=D$. Solve for A then use the outer product expansion to derive the spectral decomposition.

$$
\begin{aligned}
& Q^{\top} A Q=D \\
& \text { Left-multiply by } Q \text { : } \\
& Q Q^{-1} A Q=Q D \\
& A Q=Q D \\
& \text { Right-multiply by } Q^{\top} \text { : } \\
& A Q Q^{\top}=Q D Q^{\top} \\
& A=Q \Delta Q^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\ldots+\lambda_{n} \vec{q}_{n} \vec{q}_{n}^{\top}
\end{aligned}
$$

Appendix: Other Topics

7.3 Least Squares Approximation

Definition: Given an approximate solution \vec{s}, the error vector is $\vec{b}-A \vec{s}$ and the error is $\|\vec{b}-A \vec{s}\|$.

Definition: The least squares solution \vec{x}^{*} is the approximate solution with the minimum error.

Comment: Recall that $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$. The terminology least squares solution emphasizes that we're making the length of the error vector as small as possible.

Fact: The least squares solution to a system $A \vec{x}=\vec{b}$ is $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$.

Comment: We'll assume that the columns of A are linearly independent so that $\left(A^{T} A\right)^{-1}$ exists.

Example: The system $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ is inconsistent.
Find the least squares solution \vec{x}^{*}.

$$
\begin{aligned}
\vec{x}^{*} & =\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
A^{\top} A & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
\left(A^{\top} A\right)^{-1} & =\frac{1}{3}\left[\begin{array}{ll}
2 & -1 \\
-1 & 2
\end{array}\right] \\
\vec{x}^{*} & =\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& =\frac{1}{3}\left[\begin{array}{lll}
2 & -1 & 2 \\
-1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
7 \\
8
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{l}
6 \\
9
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{aligned}
$$

Example: Calculate the error for \vec{x}^{*} above. What can you say about the error for any other vector \vec{x} ?

$$
\text { error vector } \vec{b}-A \vec{a}^{*}=\left[\begin{array}{c}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
0 \\
0
\end{array} 1\right.
$$

$$
=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]-\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]
$$

Example: Find the best-fit line $y=a_{0}+a_{1} x$.
The best-fit line is also called the least squares regression line.

x	y
0	4
1	1
2	0

$$
a_{0} \text { and } a_{1} \text { are the mhnowns. }
$$

$$
\begin{gathered}
a_{0}+a, x=y \\
1\left(a_{0}\right)+x\left(a_{1}\right)=y \\
n\left[\begin{array}{ll}
1 & x \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \\
A^{\top} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
\vec{x}^{*} & =\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& =\frac{1}{6}\left[\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{6}\left[\begin{array}{c}
22 \\
-12
\end{array}\right] \text { or }\left[\begin{array}{c}
11 / 3 \\
-2
\end{array}\right] \Leftarrow a_{0}
$$

$$
\begin{aligned}
& y=a_{0}+a_{1} x \\
& y=\frac{11}{3}-2 x
\end{aligned}
$$

