We're going to recap the outer product expansion of AB from Section 3.1.

Example: Find
$$\begin{bmatrix} 1\\3 \\ 4 \end{bmatrix} \begin{bmatrix} 5 & 6\\7 & 8 \end{bmatrix}$$
 using the outer product expansion.

$$= \begin{bmatrix} 1\\3 \\ 3 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix} + \begin{bmatrix} 2\\4 \\ 4 \end{bmatrix} \begin{bmatrix} 7 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 6\\15 & 18 \end{bmatrix} + \begin{bmatrix} 14 & 16\\28 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 22\\43 & 50 \end{bmatrix}$$

Example: Find $\begin{bmatrix} -1 & 9 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ using the outer product expansion. $= \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 & 3 \end{bmatrix} + \begin{bmatrix} 9 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} -4 & -3 \\ 8 & 6 \end{bmatrix} + \begin{bmatrix} 18 & 9 \\ 6 & 3 \end{bmatrix}$ $= \begin{bmatrix} 14 & 6 \\ 14 & 9 \end{bmatrix}$ **Definition:** Let A be a symmetric $n \times n$ matrix. Let $\vec{q_1}, \vec{q_2}, \ldots, \vec{q_n}$ be <u>orthonormal</u> eigenvectors written as <u>columns</u>. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the corresponding eigenvalues. The **spectral decomposition of** A is: $A = \lambda_1 \vec{q_1} \vec{q_1}^T + \lambda_2 \vec{q_2} \vec{q_2}^T + \ldots + \lambda_n \vec{q_n} \vec{q_n}^T$

Example: Find a 3 × 3 matrix A with eigenvalues
$$\lambda = 2$$
 and $\lambda = 3$ so that:
 $E_2 = \text{span}\left(\frac{1}{1}\right), \left(\frac{1}{-1}\right)$ and $E_3 = \text{span}\left(\frac{1}{-2}\right)$.
Eigenvectors are orthogonal
 $Q_1 = \frac{1}{\sqrt{5}} \left(\frac{1}{1}\right), \quad \overline{Q}_2 = \frac{1}{\sqrt{5}} \left(\frac{1}{-1}\right), \quad \overline{Q}_3 = \frac{1}{\sqrt{6}} \left(\frac{1}{-2}\right)$
are orthonormal eigenvectors
 $A = \lambda_1 \quad \overline{Q}_1 \quad \overline{Q}_1 \quad \overline{T} + \dots$
 $= \left(2 \quad \frac{1}{\sqrt{5}} \quad \frac{1}{\sqrt{5}} \quad \begin{bmatrix}1}{1}\right) \begin{bmatrix}1 & 1 & 1\end{bmatrix} + \left(2 \quad \frac{1}{\sqrt{5}} \quad \begin{bmatrix}-1\\0\\0 \end{bmatrix} \begin{bmatrix}1 & -1 & 0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0 \end{bmatrix} \begin{bmatrix}1 & -1 & 0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0\\0 & 0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0\\0\\0&0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0\\0&0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0&0&0\\0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0\\0&0&0\\0&0\\0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0&0&0\\0&0\\0&0\\0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0&0&0\\0&0\\0&0\\0&0\\0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0&0&0\\0&0\\0&0\\0&0\\0&0\\0&0\end{bmatrix} + \frac{3}{\sqrt{5}} \quad \begin{bmatrix}1\\0&0&0\\0&0\\0&0\\0&$

Example Continued...

Example: Suppose $Q^T A Q = D$. Solve for A then use the outer product expansion to derive the spectral decomposition.

$$Q^{T}AQ = D$$
Left-multiply by Q:
$$Q^{T}AQ = QD$$

$$AQ = QD$$

$$AQ = QD$$

$$Right-multiply by Q^{T} = AQQ^{T} = QDQ^{T}$$

$$A = QDQ^{T}$$

$$= \left[\overline{q}_{1} \overline{q}_{2} \cdots \overline{q}_{n}\right] \left[\begin{array}{c} 1 \\ -1 \\ -1 \end{array} \right] \left[\begin{array}{c} \overline{q}_{2} \\ \overline{q}_{2} \\ \overline{q}_{n} \end{array} \right]$$

$$= \left[\lambda_{1} \overline{q}_{1} \left[\lambda_{1} \overline{q}_{2} \right] \cdots \left[\lambda_{n} \overline{q}_{n} \right] \left[\begin{array}{c} \overline{q}_{2} \\ \overline{q}_{n} \\ \overline{q}_{n} \end{array} \right]$$

$$= \lambda_{1} \overline{q}_{1} \overline{q}_{1}^{T} + \lambda_{2} \overline{q}_{2} \overline{q}_{2}^{T} + \ldots + \lambda_{n} \overline{q}_{n} \overline{q}_{n}^{T}$$

Appendix: Other Topics

7.3 Least Squares Approximation

(Curve Filling)

Aā~5 5-Aī~õ

Recall that a system $A\vec{x} = \vec{b}$ may be inconsistent.

Definition: Given an approximate solution \vec{s} , the error vector is $\vec{b} - A\vec{s}$ and the error is $||\vec{b} - A\vec{s}||$.

Definition: The **least squares solution** \vec{x}^* is the approximate solution with the minimum error.

Comment: Recall that $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$. The terminology least squares solution emphasizes that we're making the length of the error vector as small as possible.

Fact: The least squares solution to a system $A\vec{x} = \vec{b}$ is $\vec{x}^* = (A^T A)^{-1} A^T \vec{b}$.

Comment: We'll assume that the columns of A are linearly independent so that $(A^T A)^{-1}$ exists.

Example: The system
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$$
 is inconsistent.

Find the least squares solution \vec{x}^* .

$$\vec{z}^{*} = (\vec{A} \vec{A})^{'} \vec{A} \vec{b}$$

$$\vec{A} \vec{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 7 & 2 \end{bmatrix}$$

$$(\vec{A} \vec{A})^{'} = \frac{1}{3} \begin{bmatrix} 7 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\vec{x}^{*} = (\vec{A} \vec{A})^{'} \vec{A} \vec{b}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 6 \\ 9 \end{bmatrix} \text{ or } \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Example: Calculate the error for \vec{x}^* above. What can you say about the error for any other vector \vec{x} ?

error vector
$$\vec{b} - A\vec{x}^* = \begin{bmatrix} 2\\6 \end{bmatrix} - \begin{bmatrix} 1\\0\\1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$= \begin{bmatrix} 2\\6 \end{bmatrix} - \begin{bmatrix} 2\\3\\5 \end{bmatrix}$$

$$= \begin{bmatrix} -1\\1 \end{bmatrix}$$

Exa	mple:	Find t	he be	est-fit	line	$y = a_0$	$a_{1}x_{2}$		
The	best-fit	line is	also	called	the	least	squares	$\operatorname{regression}$	line.

$\begin{array}{c c} x & y \\ \hline 0 & 4 \\ 1 & 1 \\ 2 & 0 \end{array}$
a, and a, we the ununowns.
$Q_0 + Q_1 \chi = \chi$
$\left(\left(a_{o}\right)+\chi\left(a_{i}\right)=y$
System $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$
$\overrightarrow{AA} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$
$\vec{x} = (\vec{A} \vec{A} \vec{A}) \vec{A} \vec{b}$
$= \frac{1}{6} \begin{bmatrix} S & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$
$= \frac{1}{6} \begin{bmatrix} 22 \\ -12 \end{bmatrix} \text{or} \begin{bmatrix} 1/3 \\ -2 \end{bmatrix} \ll \begin{array}{c} q_0 \\ q_1 \end{bmatrix}$
$4 = \alpha_0 + q_1 x$
$y = \frac{11}{3} - 2x$