Definition: Let A be a matrix with linearly independent columns. The **QR Factorization of** A is:

A = QR where Q is an orthogonal matrix and R is upper triangular.

orthonormal Glumps

Example: Let A = QR for an orthogonal matrix Q. Show that $R = Q^T A$.

$$A = QR$$
Left-multiply by Q^T : $Q^T A = Q^T QR$

$$Q^T A = R$$

$$R = Q^T A$$

Fact: Let A = QR for an orthogonal matrix Q. To find Q: Apply Gram-Schmidt to the columns of A, and normalize. Then $R = Q^T A$.

Example: Find Q and R for
$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Q: Gram - Schmidt on G lumar of A
and normalize.
Partial Basis $X = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0$

ζ

Example: Approximating the eigenvalues of A. This example will not be tested.

Consider the following procedure: Find $A = Q_0 R_0$. Let $A_1 = R_0 Q_0$ then find $A_1 = Q_1 R_1$. Let $A_2 = R_1 Q_1$ then find $A_2 = Q_2 R_2$ etc. Each matrix A_k has the same eigenvalues as A. As $k \to \infty$, A_k becomes upper triangular.

Suppose we start with matrix A and produce $A_4 = \begin{bmatrix} 1.98 & 2.52 \\ 0.03 & 7.01 \end{bmatrix}$. a) Does A_4 have the same eigenvalues as A?

Yes

b) Is A_4 approximately upper triangular?

c) Estimate the eigenvalues of A.

 $\lambda \approx 1.98$, 7.01

5.4 Orthogonal Diagonalization

Recall that if Q is orthogonal then $Q^{-1} = Q^T$.

Definition: An $n \times n$ matrix A is **orthogonally diagonalizable** if there exist an orthogonal matrix Q and a diagonal matrix D so that $Q^T A Q = D$.

Compare with Section 4.4 P-1AP=D

Fact: Let A be an $n \times n$ matrix. The matrix A is orthogonally diagonalizable if and only if A is symmetric.

$$< A^{T} = A$$

Example: Is A orthogonally diagonalizable?

b)
$$A = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$$

 $A^{\top} \neq A$
 N_{0}

Example: The matrix $A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}$ has eigenvalues $\lambda = 4$ and $\lambda = 7$. Find Q that orthogonally XFind Q that orthogonally diagonalizes AQ: Find an orthonormal basis for each eigenspace. [A-7][0] $\lambda = 7$: $\begin{bmatrix}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{bmatrix}$ $\begin{array}{c} x_{1} & x_{2} & x_{3} \\ \end{array} \\ \begin{array}{c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \begin{array}{c} RREF \\ \end{array} \\ \begin{array}{c} x_{3} = t \end{array} \end{array}$ $\chi_1 - \chi_3 = 0 \implies \chi_1 = t$ $\lambda_2 - \lambda_3 = 0 \implies \lambda_2 = t$ $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} t$ Basis for $\vec{E}_{T} = \vec{E} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \vec{s}$ Orthonormal Basis for E7 = { []]} $\begin{bmatrix} A - 4 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ 入=4;