Definition: Let A be a matrix with linearly independent columns.
The QR Factorization of A is:
$A=Q R$ where Q is an orthogonal matrix and R is upper triangular.

Example: Let $A=Q R$ for an orthogonal matrix Q. Show that $R=Q^{T} A$.

$$
A=Q R
$$

Left-multiply

Fact: Let $A=Q R$ for an orthogonal matrix Q.
To find Q : Apply Gram-Schmidt to the columns of A, and normalize.
Then $R=Q^{T} A$.

Example: Find Q and R for $\left.A=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 3\end{array}\right]\right)$.
Q: Gram-Schmidt on Glume of A, and normalize.

$$
\begin{aligned}
& \text { Partial Basis } \quad X=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} \\
& \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right]-\operatorname{proj}_{x}\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
1 \\
2 \\
0
\end{array}\right]-\frac{1}{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
1 \\
2 \\
0
\end{array}\right] \quad \text { Partial Basis } X=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]\right\} \\
& \vec{V}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]-p \infty j \times\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]-\operatorname{proj}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]-\operatorname{prj}\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]-\frac{0}{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right] \\
& S \stackrel{\rightharpoonup}{v}_{3}=S\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]-3\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
2 \\
-1 \\
15
\end{array}\right] \quad \text { Orthogonal Basis }=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
-1 \\
15
\end{array}\right]\right\}
\end{aligned}
$$

Example Continued...

$$
\begin{aligned}
& \text { Example continamel. } \\
& \text { Orthal Basis }=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \frac{1}{\sqrt{230}}\left[\begin{array}{c}
0 \\
2 \\
15
\end{array}\right]\right\} \\
& Q=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{5} & 2 / \sqrt{230} \\
0 & 2 \sqrt{5} & -1 / \sqrt{330} \\
0 & 15 / \sqrt{230}
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \\
0 & 1 / \sqrt{5} & 2 / \sqrt{5} & 0 \\
0 & 2 / \sqrt{230} & -1 / \sqrt{230} & 15 / \sqrt{230}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & \frac{5}{\sqrt{5}} & \frac{3}{\sqrt{5}} \\
0 & 0 & \frac{46}{\sqrt{230}}
\end{array}\right]
$$

Example: Approximating the eigenvalues of A. This example will not be tested.
Consider the following procedure:
Find $A=Q_{0} R_{0}$.
Let $A_{1}=R_{0} Q_{0}$ then find $A_{1}=Q_{1} R_{1}$.
Let $A_{2}=R_{1} Q_{1}$ then find $A_{2}=Q_{2} R_{2}$ etc.
Each matrix A_{k} has the same eigenvalues as A.
As $k \rightarrow \infty, A_{k}$ becomes upper triangular.

Suppose we start with matrix A and produce $A_{4}=\left[\begin{array}{ll}1.98 & 2.52 \\ 0.03 & 7.01\end{array}\right]$.
a) Does A_{4} have the same eigenvalues as A ?
Yes
b) Is A_{4} approximately upper triangular?

c) Estimate the eigenvalues of A.

$$
\lambda \approx 1.98,7.01
$$

5.4 Orthogonal Diagonalization

Recall that if Q is orthogonal then $Q^{-1}=Q^{T}$.

Definition: An $n \times n$ matrix A is orthogonally diagonalizable if there exist an orthogonal matrix Q and a diagonal matrix D so that $Q^{T} A Q=D$.

- mpare

$\left.p^{-1} A P=D\right)$
Fact: Let A be an $n \times n$ matrix. The matrix A is orthogonally diagonalizable if and only if A is symmetric.

Example: Is A orthogonally diagonalizable?
a) $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right]$

$$
A^{\top}=A
$$

Yes
b) $A=\left[\begin{array}{cc}3 & -4 \\ 4 & 3\end{array}\right]$

$$
\begin{array}{r}
A^{T} \neq A \\
N_{0}
\end{array}
$$

Example: The matrix $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$ has eigenvalues $\lambda=4$ and $\lambda=7$.
Find Q that orthogonally diagonalizes A.

$\lambda=7=$

$$
\begin{aligned}
& {[A-7 I \mid \overrightarrow{0}]} \\
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& \begin{array}{c}
\sim\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3}^{2} & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { oRt } \\
x_{3}=t \\
x_{1}-x_{3}=0 \Rightarrow x_{1}=t
\end{array} \\
& x_{2}-x_{3}=0 \Rightarrow x_{2}=t \\
& \vec{x}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] t \quad \text { Basis for } t_{7}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \\
& \text { Orthonormal Basis for } \epsilon_{7}=\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$$
\lambda=4 ;
$$

Example Continued...

$$
\begin{gathered}
\stackrel{\text { d... }}{\sim}\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { RRtF } \\
x_{2}=1 \\
x_{2} \\
x_{3}=t \\
x_{1}+x_{2}+x_{3}=0 \Rightarrow x_{1}=-2-t
\end{gathered}
$$

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] z+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] t \quad \text { Basis for } t_{4}=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \zeta\right.
$$

Grum -Schmidt
m-schmidt
Partial Basis $X=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$

$$
\begin{aligned}
\vec{V}_{2} & =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\operatorname{proj} \times\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
2 \vec{v}_{2} & =2\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \quad \text { Orthogonal Basis }=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right\}\right.
\end{aligned}
$$

Orthondnal Basis tar $\epsilon_{4}=\left[\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]\right\}$

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right]
$$

To check:

$$
Q^{\top} A Q=\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

