


5.2 Orthogonal Complements and Projections

Example: Let W = { [ﬂ such that 3z +y = 0}. Find a basis for W and for W+.
-
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5.2 Orthogonal Complements and Projections

Example: Let A = [

1 00 4
0116

] and let W = row(A). Find a basis for W+.
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5.2 Orthogonal Complements and Projections

Example: Let A = [

W= span | HHv

O N =
O = W

] and let W = col(A). Find a basis for W,

W [\3 4o 2}
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Fact: For any matrix A, [col(A)]* = null(AT). \/\J~€ ) ] ) C‘Q \/\ S \ )" J(\/\ \j/
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5.2 Orthogonal Complements and Projections

Definition: Let W be a subspace of R" with orthogonal basis {w, Ws, ..., W}
The orthogonal projection of 7 onto W is:

Projw v = projg, U+ projg,v + ...+ projg,v.

Comment: This formula only applies when the basis for W is orthogonal.

Example: Let W be a plane through the origin in R3. Let ¥ be a vector in R3 that does
not lie in W. Sketch W, ¢ and projyv.
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5.2 Orthogonal Complements and Projections

()

&7 =
17 [o W
Example: W has orthogonal basis B = { 8 , 11 }.
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5.2 Orthogonal Complements and Projections

Definition: The orthogonal decomposition of ¢ with respect to W is:

= projy v C

where projy 7 is in W and perpy @ is in W+,

W/@ VRN \geclqu \W f \F

Example: Let W be a plane through the origin in R3. Let ¢ be a vector in R3 that does
not lie in W. Sketch W, ¢, projw v and perpyv.
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5.2 Orthogonal Complements and Projections

b T Q”
[ 1 2 Q-__\ =)
Example: W has orthogonal basis B={| 0 |, [—1]}. u‘).,
—1 2

1
Find the orthogonal decomposition of v = 1] with respect to W.

Fad 1) 0 omﬁ_ QU@,\/-\?-
o@%\ﬁw\ s 1S

— ij;)w“\f = Emf@ R K Svil
Ak_/

UPNT = T = Propd U
Pt :i[ﬁ}y,,)_\j [fﬂ
181dc{\g/5 4 4o
g%



