

Example: Let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ such that $\left.3 x+y=0\right\}$. Find a basis for W and for W^{\perp}.
W : line in \mathbb{R}^{2}
Two points $P=(0,0) \quad Q=(1,-3)$

$$
\vec{d}=\overrightarrow{P Q}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]
$$

Basis for $W=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$
w^{\perp};

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
x & y \\
1 & -3 & \mid
\end{array}\right]} \\
& \uparrow=t \\
& y=t \\
& x-3 y=0 \Rightarrow x=3 t \\
& \vec{x}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] t
\end{aligned}
$$

Basis for $W^{\perp}=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$

Example: Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6\end{array}\right]$ and let $W=\operatorname{row}(A)$. Find a basis for W^{\perp}.

Example: Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4 \\ 0 & 0\end{array}\right]$ and let $W=\operatorname{col}(A)$. Find a basis for W^{\perp}. NA

Definition: Let W be a subspace of \mathbb{R}^{n} with orthogonal basis $\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{k}\right\}$. The orthogonal projection of \vec{v} onto W is:
$\operatorname{proj}_{W} \vec{v}=\operatorname{proj}_{\vec{w}_{1}} \vec{v}+\operatorname{proj}_{\vec{w}_{2}} \vec{v}+\ldots+\operatorname{proj}_{\vec{w}_{k}} \vec{v}$.

Comment: This formula only applies when the basis for W is orthogonal.

Example: Let W be a plane through the origin in \mathbb{R}^{3}. Let \vec{v} be a vector in \mathbb{R}^{3} that does not lie in W. Sketch W, \vec{v} and $\operatorname{proj}_{W} \vec{v}$.

Example: W has orthogonal basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]\right\}$.

Find the orthogonal projection of $\vec{v}=\left[\begin{array}{c}1 \\ 5 \\ -3 \\ 7\end{array}\right]$ onto W.

Definition: The orthogonal decomposition of \vec{v} with respect to W is:

where $\operatorname{proj}_{W} \vec{v}$ is in W and $\operatorname{perp}_{W} \vec{v}$ is in W^{\perp}.

Example: Let W be a plane through the origin in \mathbb{R}^{3}. Let \vec{v} be a vector in \mathbb{R}^{3} that does not lie in W. Sketch $W, \vec{v}, \operatorname{proj}_{W} \vec{v}$ and $\operatorname{perp}_{W} \vec{v}$.

Example: W has orthogonal basis $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]\right\}$.
Find the orthogonal decomposition of $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]$ with respect to W.

