

Example: Let $W = \{ \begin{vmatrix} x \\ y \end{vmatrix}$ such that $3x + y = 0 \}$. Find a basis for W and for W^{\perp} . W: line in R Two points P = (0,0) Q = (1,-3) $J = PQ = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ Basis for $W = \{ [-3] \}$ $x \quad y$ $\begin{bmatrix} 1 & -3 & | & 0 \end{bmatrix}$ $f \quad T \qquad RR$ y=t x(-3y=0) = x(-3t) $\vec{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} t$ Basis for $W^{\perp} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

Example: Let
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$$
 and let $W = col(A)$. Find a basis for W^{\perp} .
 $W = SPM(\begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 3 & 4 & 0 & | & 0 \end{bmatrix}$
 $W^{\perp} : \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 3 & 4 & 0 & | & 0 \end{bmatrix}$
 $W^{\perp} : \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 3 & 4 & 0 & | & 0 \end{bmatrix}$
 $W^{\perp} : \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 3 & 4 & 0 & | & 0 \end{bmatrix}$
 $W^{\perp} : \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 3 & 4 & 0 & | & 0 \end{bmatrix}$
 $W = \begin{bmatrix} 0 & 0 & | & 0 \\ 0 & | & 0 & | & 0 \end{bmatrix}$
 $W = Col(A)$
 $W^{\perp} = Col(A)$
 $W^{\perp} = Col(A)$
 $W^{\perp} = Col(A)$
 $W^{\perp} = Col(A^{\perp})$
 $W^{\perp} = Col(A^{\perp})$

Definition: Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$. The **orthogonal projection of** \vec{v} onto W is:

 $\operatorname{proj}_W \vec{v} = \operatorname{proj}_{\vec{w}_1} \vec{v} + \operatorname{proj}_{\vec{w}_2} \vec{v} + \ldots + \operatorname{proj}_{\vec{w}_k} \vec{v}.$

Comment: This formula only applies when the basis for W is **orthogonal**.

Example: Let W be a plane through the origin in \mathbb{R}^3 . Let \vec{v} be a vector in \mathbb{R}^3 that does not lie in W. Sketch W, \vec{v} and $\operatorname{proj}_W \vec{v}$.

Definition: The orthogonal decomposition of \vec{v} with respect to W is:

 $\vec{v} = \text{proj}_W \vec{v} + \text{perp}_W \vec{v}$ where $\operatorname{proj}_W \vec{v}$ is in W and $\operatorname{perp}_W \vec{v}$ is in W^{\perp} . ١١ perp with respect $(\land$

Example: Let W be a plane through the origin in \mathbb{R}^3 . Let \vec{v} be a vector in \mathbb{R}^3 that does not lie in W. Sketch W, \vec{v} , $\operatorname{proj}_W \vec{v}$ and $\operatorname{perp}_W \vec{v}$.

