4.4 Diagonalization

4.4 Diagonalization

Definition: An n x n matrix A is diagonalizable if there exist an invertible matrix P
and a diagonal matrix D so that P~'AP = D.

Fact: To find P we find a basis for each eigenspace of A. The basis vectors go into the
columns of P. The matrix D has the eigenvalues on the diagonal, in the same order as P.
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4.4 Diagonalization

Example Continued...

A= Ih-2T 13
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4.4 Diagonalization

Fact: A is diagonalizable if and only if:
geometric multiplicity=algebraic multiplicity for all eigenvalues of A.

Example: Diagonalize A = {4 0] (if possible).
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Example: Let A = 111 2 . Find the characteristic equation, the algebraic multiplicity of

A =4 and the geometric multiplicity of A = 4. Explain, in terms of algebraic and geometric
multiplicity, why A can’t be diagonalized.
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4.4 Diagonalization

Fact: Let n be a positive integer. If D is diagonal then D" is diagonal, with n-th powers
on the diagonal.
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Example: Calculate {_4 O} :
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Fact: Let n be a positive integer. If P~*AP = D then A" = PD"P~

Example: Prove the fact above.

P'AP=D
PV Af= P
AeP = Prp”
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4.4 Diagonalization

Find A*, where k
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is a positive integer.

Example:
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4.4 Diagonalization

Example: Application of A” and eigenvectors. This example will not be tested.
Consider a company with 1000 machines.

a) Suppose a working machine has a 99% probability of working tomorrow. Suppose a bro-
ken machine has a 50% probability of being broken tomorrow. Write down the probability

matrix, A. W B 14 01,7

b) Suppose all machines are working today. Write down the initial state vector, ¥'.
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¢) How many machines will be working or broken tomorrow?
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d) How many machines will be working or broken two days from now?
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e) How many machines will be working or broken three days from now?
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f) How many machines will be Working or broken n days from now, where n is a non-negative

integer? n So000 9o
/ﬁ[ \f N 13{/6 \(\ A F B ;_39 -~ Lo
< |

g) What initial state vector ¥ would have Av = ¢7 This is called the steady-state vector
because the state after one day is the same as the initial state.
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