Example Continued...

Possible roots:
$$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$$
 $\lambda = -1: (-1)^3 - 12(-1) + 16 = 0?$ No

 $\lambda = 1: (-2)^3 - 12(-2) + 16 = 0?$ No

 $\lambda = -2: (-2)^3 - 12(-2) + 16 = 0?$ No

 $\lambda = 2: 2^3 - 12(2) + 16 = 0?$ YES

 $\lambda = 2 \text{ is a root}$
 $\lambda = 2 \text{ is a factor of polynomial}$
 $\lambda^2 + 2\lambda - 8$
 $\lambda^3 + 0\lambda^2 - 12\lambda + 16$
 $\lambda^2 + 2\lambda - 8$
 $\lambda^3 + 0\lambda^2 - 12\lambda + 16$
 $\lambda^3 + 0\lambda^2 - 12\lambda + 16$

 $\lambda^{3} - 12\lambda + 16 = 0$ $(\lambda - 2)(\lambda^{2} + 2\lambda - 8) = 0$ $(\lambda - 2)(\lambda - 2)(\lambda + 4) = 0$ $(\lambda - 2)^{2}(\lambda + 4) = 0$ $\lambda = 2, -4$ $\lambda = 2, 2, -4$

Definition: The characteristic equation of A is $|A - \lambda I| = 0$.

The **algebraic multiplicity** of an eigenvalue λ_i is the exponent on $(\lambda_i - \lambda)$ in the characteristic equation.

 $DC(\lambda - \gamma^c)$

The **geometric multiplicity** of an eigenvalue is the number of basis vectors in the corresponding eigenspace.

Example: Let A have characteristic equation $(7 - \lambda)^3(9 - \lambda)^2 = 0$. A basis for E_7 consists of one vector. A basis for E_9 consists of two vectors. Find the eigenvalues of A and state their algebraic multiplicities and their geometric multiplicities.

Eigenvalues

1-1

Alg. Mult.

2

Geo. Mult.

pa 6

Si=[]AH]t

eigespace 15 a line

Fact: For each eigenvalue:

 $1 \leq \text{geometric multiplicity} \leq \text{algebraic multiplicity}$

Comment: If a matrix has

(geometric multiplicity) = (algebraic multiplicity) for all its eigenvalues then the matrix has a nice property.

We'll see the details in Section 4.4.

We'll look at five properties of eigenvalues.

Property 1: A is invertible if and only if 0 is not an eigenvalue of A.

Example: Prove Property 1.

0 is not an eigenvalue of A

det (A-OI) \$\neq 0\$

det A \$\neq 0\$

A is invertible

Property 2: If A is invertible and $A\vec{x} = \lambda \vec{x}$ then \vec{x} is an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$.

Example: Prove Property 2.

Asi =
$$\lambda \dot{x}$$
 and $A^{-1} exists$

$$\Rightarrow A^{-1}A\dot{x} = A^{-1}\lambda\dot{x}$$

$$\Rightarrow \dot{x}\dot{x} = \lambda A^{-1}\dot{x}$$

$$\Rightarrow \dot{x}\dot{x} = A^{-1}\dot{x}$$

$$\Rightarrow A^{-1}\dot{x} = A^{-1}\dot{x}$$

$$\Rightarrow A^{-1}\dot{x} = A^{-1}\dot{x}$$

$$\Rightarrow A^{-1}\dot{x} = A^{-1}\dot{x}$$
eigenvalue of A^{-1}

Property 3: Let n be a non-negative integer. If $A\vec{x} = \lambda \vec{x}$ then $A^n\vec{x} = \lambda^n\vec{x}$.

Example: Prove Property 3.

$$A^{n} \overrightarrow{J} = A^{n-1} A \overrightarrow{J}$$

$$= A^{n-1} \overrightarrow{J}$$

$$= \lambda A^{n-1} \overrightarrow{J}$$

$$= \lambda A^{n-2} A \overrightarrow{J}$$

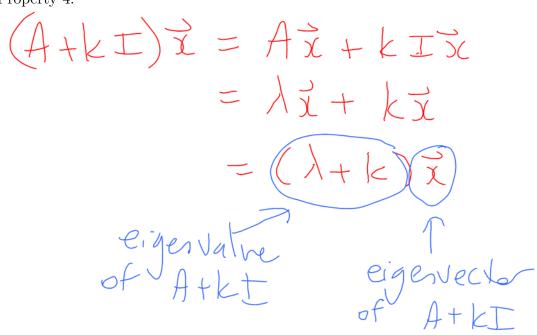
$$= \lambda A^{n-1} A \overrightarrow{J}$$

$$= \lambda$$

ligervalue of

Property 4: If $A\vec{x} = \lambda \vec{x}$ then \vec{x} is an eigenvector of A + kI with eigenvalue $\lambda + k$.

Example: Prove Property 4.



Property 5: Let n be a non-negative integer.

Suppose A has eigenvectors $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m$ corresponding to eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$. Then: $A^n(c_1\vec{x}_1 + c_2\vec{x}_2 + \dots + c_m\vec{x}_m) = c_1\lambda_1^n\vec{x}_1 + c_2\lambda_2^n\vec{x}_2 + \dots + c_m\lambda_m^n\vec{x}_m$.

Comment: This is a generalization of Property 3.

Note that the coefficients are preserved.

Example: Suppose A has:

eigenvalue $\lambda_1 = -2$ corresponding to eigenvector $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and

eigenvalue $\lambda_2 = 3$ corresponding to eigenvector $\vec{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

Calculate $A^3 \begin{bmatrix} 11 \\ 2 \end{bmatrix}$.

(Property 5)

i) Let
$$(i\vec{V}_1 + (i\vec{V}_2) = \begin{bmatrix} 11\\2 \end{bmatrix}$$

$$\begin{bmatrix} (1 & (2)\\2 & -1 \end{bmatrix} = \begin{bmatrix} 11\\2 \end{bmatrix}$$

$$C_{1} = 3$$
, $C_{2} = 4$

2)
$$A^{3} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = A^{3} (3\vec{r}_{1} + 4\vec{r}_{2})$$

= $(1)^{3} \vec{r}_{1} + (2)^{3} \vec{r}_{2}$

$$= \frac{1}{3} \left(\frac{1}{1} + \frac{3}{1} + \frac{3}{1} + \frac{3}{1} \right) \left[\frac{2}{108} \right] + \frac{1}{108} \left[\frac{2}{1} \right]$$

$$=\begin{bmatrix} 192 \\ -156 \end{bmatrix}$$

Example: Suppose A has the eigenvalue 3 corresponding to the eigenvector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

List one eigenvector and one eigenvalue for each of the following matrices: A^{-1} , A^4 , A + 2I.

(Proporties 2-4)

Matrix

A

A .

A+ZI

Eigen Veller (27

 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

tigervalue =

3 = 81

3+2=5

4.4 Diagonalization

Definition: An $n \times n$ matrix A is **diagonalizable** if there exist an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

Fact: To find P we find a basis for each eigenspace of A. The basis vectors go into the columns of P. The matrix D has the eigenvalues on the diagonal, in the same order as P.

Example: Let $A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Find P and D that diagonalize A. (A = 2,3,3 (A is upper triangular)Ez: set of all eigenvectors Gresponding to N=Z, plus the zero Vector. $[A-\lambda I]$ [A-ZI [] Basis for $f_2 = \{\{\{\}\}\}$