Test 3 FRI MAR 22 3.4-3.6, 4.1-4.2 (6 Questions) Bring : calculator music fearplugs Practice Problems on Website

Fact: Cramer's Rule Let A be an $n \times n$ matrix. When det $A \neq 0$, the system $A\vec{x} = \vec{b}$ has a unique solution: i-th variable= $\frac{|A_i|}{|A|}$ where $A_i = A$ with the i-th column replaced by \vec{b} .

Example: Solve using Cramer's Rule:

$$A = \begin{bmatrix} 2 & 3 & 2 \\ 3 & 0 & 5 \\ 4 & (& 1 \end{bmatrix} \qquad \begin{array}{c} 2x + 3y + 2z = -11 \\ 3x & +5z = 23 \\ 4x + y + z = 1 \end{array} \qquad A_{1} = \begin{bmatrix} -11 & 3 & 2 \\ 23 & 0 & 5 \\ 1 & 1 & 1 \\ \end{array}$$

$$|A| = 47$$

$$|A_{1}| = 47$$

$$|A_{2}| = \begin{bmatrix} 2 & -11 & 2 \\ 3 & 23 & 5 \\ 4 & 1 & 1 \end{bmatrix} \qquad (a \log R_{OW} 1)$$

$$= 2 \begin{bmatrix} 23 & 5 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} (a \log R_{OW} 1)$$

$$= 2 \begin{bmatrix} 23 & 5 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} (a \log R_{OW} 1)$$

$$= 2 (18) + 11 (-17) + 2 (-89)$$

$$= -3 29$$

$$|A_{3}| = \begin{bmatrix} 2 & 3 & -11 \\ 3 & 0 & 223 \\ 4 & 1 & 1 \end{bmatrix} (a \log G_{W_{MA}} 2)$$

$$= -3 \begin{bmatrix} 3 & 23 \\ -11 \\ 3 & 0 & 223 \\ 4 & 1 & 1 \end{bmatrix} (a \log G_{W_{MA}} 2)$$

$$= -3 \begin{bmatrix} 3 & 23 \\ -11 \\ 4 & 1 \\ 1 \end{bmatrix} (a \log G_{W_{MA}} 2)$$

$$= -3 \begin{bmatrix} -3 & 3 & 23 \\ 4 & 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 & -11 \\ 3 & 23 \\ -1 \end{bmatrix} (a \log G_{W_{MA}} 2)$$

$$= -3 \begin{bmatrix} -3 & 23 \\ -11 \\ -1 \end{bmatrix} - \begin{bmatrix} 2 & -11 \\ -12 \\ -14 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -188 \\ -2 \end{bmatrix} = \begin{bmatrix} -7 \\ -7 \\ -188 \end{bmatrix} = 4$$

Definition: A cofactor is the signed determinant in the cofactor expansion that's associated with a matrix entry. It's written C_{ij} .

The sign is given by the checkerboard pattern: $\begin{bmatrix} + & - & + & \dots \\ - & + & - & \dots \\ \dots & \dots & \dots \end{bmatrix}.$

Example: Let $A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 5 \end{bmatrix}$. Calculate the cofactors C_{11}, C_{12} and C_{32} . $C_{12} = + \begin{vmatrix} 0 & 3 \\ 1 & 5 \end{vmatrix} = + (-3) = -3$ $C_{12} = - \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = -2$ $(3)_{2} = - \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = -2$

Definition: The **cofactor matrix** is the matrix whose entries are the cofactors of A.

Example: Find the cofactor matrix for $A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 5 \end{bmatrix}$.

Cofactor Matrix =
$$\begin{bmatrix} -3 & -2 & 1 \\ 1 & 4 & -3 \\ -6 & -2 & 2 \end{bmatrix}$$

Definition: The **adjoint of** A is the transpose of the cofactor matrix. It's written adj(A).

Fact: For an $n \times n$ matrix with $|A| \neq 0$: $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$.

Example: Let
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & 2 \\ 3 & -3 & 4 \end{bmatrix}$$
. Find A^{-1} using the adjoint formula.
Cofactor Matrix = $\begin{bmatrix} 10 & -2 & -9 \\ -14 & 2 & 12 \\ 2 & 0 & -2 \end{bmatrix}$
 $adj(A) = \begin{bmatrix} 10 & -14 & 2 \\ -2 & 2 & 0 \\ -9 & 12 & -2 \end{bmatrix}$ thus pose
(along Row 1)
 $|A| = 2 \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ 3 & -3 \end{vmatrix}$
 $= 2(10) - 2(2) + 2(-9)$
 $= -2$

 $A^{-1} = \frac{-1}{2} \operatorname{adj}(A)$

Example: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Find A^{-1} using the adjoint formula. Cofactor Matrix = $\begin{bmatrix} cl & -c \\ -b & a \end{bmatrix}$ $adj(A) = \begin{bmatrix} cl & -b \\ -b & a \end{bmatrix}$ $dadj(A) = \begin{bmatrix} cl & -b \\ -c & a \end{bmatrix}$ dadj(A) = ad-bc $A^{-l} = \frac{1}{ad-bc} \begin{bmatrix} cl & -b \\ -c & a \end{bmatrix}$

4.3 Eigenvalues and Eigenvectors, $n \times n$ Matrices

Example: Find all the eigenvalues of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -4 & 3 \\ 0 & 0 & 7 \end{bmatrix}$.

Solve
$$|A-\lambda I| = 0$$

 $\begin{vmatrix} I-\lambda & I & 2 \\ 0 & -4-\lambda & 3 \\ 0 & 0 & 7-\lambda \end{vmatrix} = 0$
 $(I-\lambda)(-4-\lambda)(7-\lambda) = 0$
because the matrix is upper triangular
 $\lambda = 1, -4, 7$

Fact: The eigenvalues of an upper triangular, lower triangular or diagonal matrix are the diagonal entries.

Integer Roots Theorem

If a polynomial has integer coefficients and the leading coefficient is 1 then any integer roots divide the constant.

Example: Find all the eigenvalues of $A = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$. $\begin{aligned}
S_{\infty} | Ve | | A - \lambda D | = D \\
| B - \lambda - 1 | | \\
P - S - \lambda | | = D \\
| G - G & 2 - \lambda \end{bmatrix} = D \\
Expand along Row | : \\
(3 - \lambda) | -S - \lambda | | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | + 1 | P - S - \lambda | = O \\
| G - G & 2 - \lambda | + 1 | P | | P$

$$(3-\lambda)[(-5-\lambda)(2-\lambda)+b] + [7(2-\lambda)-6] + [-42-6(-5-\lambda)] = 0$$
$$(3-\lambda)[\lambda^{2}+3\lambda-4] + [-7\lambda+8] + [6\lambda-12] = 0$$

Example Continued...

