1.2 Length and Angle

Fact: Let @ and ¥ be in R". The angle 6 between @ and ¢ is defined to be 0° < # < 180°
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Fact: For all @,vin R": @ -0 = ||ul| ||V]| cosb

Comment: In R* and higher dimensions, this is a definition of 6.

Comment: In the special case where @ and v are unit vectors, « - v gives the value of cos 6.
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1.2 Length and Angle

Example: Find the angle between @ = [1, —4] and ¥ = [2, 3]
v = I IF es6
-lo= {1% 3 Cos O
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Example: If 0° <6 < 90°, what is the sign of @ - ¢7
What if 6 = 90°7
What if 90° < 6 < 180°7

0°< 8<90 H= 90 T°<6 <%0
& LsH > o &S GSE = O <:”BC@58<O
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1.2 Length and Angle

/\\\
Definition: Vectors @ and ¢ are orthogonal if u - v = 0. \_—_1___‘_3

Comment: The following statements are equivalent in 2D and 3D:
Vectors @ and ¥ are perpendicular (geometry language)
Vectors 4 and v are orthogonal (algebra language)

Comment: In higher dimensions it’s more appropriate to use the word orthogonal rather
than perpendicular.

Definition: The projection of ¢ onto « is written projzv. This could be read as the
projection onto u of vU.

Example: Let’s draw a few instances of projzv
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1.2 Length and Angle

Fact: proj;v = %2

Example: Find projzv for @ = [1,2] and 7 = [1, 3]
) . - _> S
Prejov = WYy
W .
L (]
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Fact: Given vectors «, v in R", there is exactly one way to decompose ¢ into two vectors
that are parallel and perpendicular to .
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1.2 Length and Angle

Example: Let @ = [1,1] and 7 = [4,2]. Find vectors @ and b so that 7 = @+ b, @ is parallel
to u, and b is perpendicular to .

‘QOMJ%W ?; = Pm\) ﬂ\-}j
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