1.2 Length and Angle

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^n . The angle θ between \vec{u} and \vec{v} is defined to be $0^{\circ} \leq \theta \leq 180^{\circ}$

Fact: For all \vec{u}, \vec{v} in \mathbb{R}^n : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \ ||\vec{v}|| \cos \theta$

Comment: In \mathbb{R}^4 and higher dimensions, this is a definition of θ .

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.

Example: Find the angle between $\vec{u} = [1, -4]$ and $\vec{v} = [2, 3]$

$$\begin{array}{lll}
\overrightarrow{u} \cdot \overrightarrow{v} &= \| \overrightarrow{u} \| \| \| \overrightarrow{v} \| \| \cos \theta \\
-10 &= \sqrt{17} \sqrt{13} \cos \theta \\
\frac{-10}{\sqrt{17} \sqrt{13}} &= \cos \theta \\
\theta &= \cos \theta \\
\sqrt{17} \sqrt{13}
\end{array}$$

$$\begin{array}{lll}
\overrightarrow{\theta} &= \cos \theta \\
\sqrt{17} \sqrt{13}
\end{array}$$

Example: If $0^{\circ} \leq \theta < 90^{\circ}$, what is the sign of $\vec{u} \cdot \vec{v}$?

What if $\theta = 90^{\circ}$?

What if $90^{\circ} < \theta \le 180^{\circ}$?

$$0^{\circ} \le \theta < 90^{\circ}$$
 $0 \le \theta < 90^{\circ}$
 $0 \le \theta \le 180^{\circ}$
 $0 \le \theta \le 0$
 $0 \le 0 \le 0$
 $0 \le 0$
 $0 \le 0 \le 0$
 $0 \le 0$
 $0 \le 0 \le 0$
 $0 \le 0$
 0

Definition: Vectors \vec{u} and \vec{v} are **orthogonal** if $\vec{u} \cdot \vec{v} = 0$.

Comment: The following statements are equivalent in 2D and 3D:

Vectors \vec{u} and \vec{v} are perpendicular (geometry language)

Vectors \vec{u} and \vec{v} are orthogonal (algebra language)

Comment: In higher dimensions it's more appropriate to use the word **orthogonal** rather than perpendicular.

Definition: The **projection** of \vec{v} onto \vec{u} is written $\text{proj}_{\vec{u}}\vec{v}$. This could be read as the projection onto \vec{u} of \vec{v} .

Example: Let's draw a few instances of $\operatorname{proj}_{\vec{u}} \vec{v}$

a)

Project

Project

A)

Project

Proj

Fact: $\operatorname{proj}_{\vec{u}} \vec{v} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}||^2} \vec{u}$

Example: Find $\operatorname{proj}_{\vec{u}}\vec{v}$ for $\vec{u} = [1, 2]$ and $\vec{v} = [1, 3]$

Fact: Given vectors \vec{u}, \vec{v} in \mathbb{R}^n , there is exactly one way to decompose \vec{v} into two vectors that are parallel and perpendicular to \vec{u} .

Example: Let $\vec{u} = [1, 1]$ and $\vec{v} = [4, 2]$. Find vectors \vec{a} and \vec{b} so that $\vec{v} = \vec{a} + \vec{b}$, \vec{a} is parallel to \vec{u} , and \vec{b} is perpendicular to \vec{u} .

$$\vec{a} = \frac{\vec{b} \cdot \vec{v}}{\vec{b} \cdot \vec{v}}$$

= $\frac{\vec{b} \cdot \vec{v}}{\vec{b} \cdot \vec{v}}$

= $\frac{\vec{c} \cdot \vec{v}}{\vec{c} \cdot \vec{v}}$