Example: a) Let \vec{u} be a vector of length 5, in standard position, rotated 30° from the positive x-axis. Find \vec{u} algebraically.

b) Let \vec{v} be a vector of length 7, in standard position, rotated 135° from the positive x-axis. Find \vec{v} algebraically.

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector's direction represents the direction of the velocity/acceleration/force. The vector's length represents the magnitude of the velocity/acceleration/force.

1.2 Length and Angle

Example: Let $\vec{u} = [1, 4, 2, -9]$ and $\vec{v} = [2, 3, -2, -1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$\vec{u} \cdot \vec{y} = 1(2) + 4(3) + 2(-2) + (-9)(-1)$$
$$= 19$$

Example: Calculate: a) $[1,5] \cdot [2,-3]$ = 1(2) + 5(-3) = -13b) $[1,5] \cdot [2,-3,0]$ undefined

c) $[u_1, u_2] \cdot [u_1, u_2]$ = $\mathcal{U}_1^2 + \mathcal{U}_2^2$

Fact: Three Properties of the Dot Product Let \vec{u}, \vec{v} be in \mathbb{R}^n . Then: 1) $\vec{u} \cdot \vec{u} \ge 0$ 2) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ 3) $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.

If $\vec{u} \cdot \vec{u} = 0$ then $\vec{u} = \vec{o}$. (LESS oBVIOUS) AND If $\vec{u} = \vec{o}$ then $\vec{u} \cdot \vec{u} = 0$ (Mort obvious)

b)
$$3\vec{u} \cdot (-2\vec{v} + 5\vec{w})$$

= $-6\vec{u} \cdot \vec{v} + 15\vec{u} \cdot \vec{w}$

Definition: The **length** of \vec{v} is written $||\vec{v}||$. If $\vec{v} = [v_1, v_2, \dots, v_n]$ then $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$. **Example:** Draw a picture to show that in 2D this is the Pythagorean Theorem.

Example: Calculate:
a)
$$||[1, 1, 1, -2]||$$

 $= \sqrt{1 + 1 + 1 + 4}$
 $= \sqrt{7}$
b) $||[3, -1]||$
 $= \sqrt{9 + 1}$
 $= \sqrt{10}$
c) $[3, -1] \cdot [3, -1]$
 $= 9 + 1$
 $= 10$

Fact: $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$ for all \vec{v}

Example: Let
$$\vec{v} = [v_1, v_2, v_3]$$
. Simplify $|| - 3\vec{v}||$.

$$= || [-3V_{13} - 3V_{23} - 3V_{3}]||$$

$$= \sqrt{9V_1^2 + 9V_2^2 + 9V_3^2}$$

$$= \sqrt{9(V_1^2 + V_2^2 + V_3^2)}$$

$$= \sqrt{9(V_1^2 + V_2^2 + V_3^2)}$$

$$= \sqrt{9(V_1^2 + V_2^2 + V_3^2)}$$

$$= 3 || \vec{v} \cdot ||$$

$$= 3 || \vec{v} \cdot ||$$

Fact: $||c\vec{v}|| = |c| ||\vec{v}||$ for all vectors \vec{v} and real numbers c.

Definition: A unit vector is a vector that has length one. Normalizing a vector \vec{v} means finding a unit vector in the same direction as \vec{v} .

Fact: The following vector has length one and the same direction as \vec{v} (provided that $\vec{v} \neq \vec{0}$): $\vec{u} = \frac{1}{||\vec{v}||}\vec{v}$

Example: Normalize $\vec{v} = [4, -2, 1]$

$$\|\vec{v}\| = \sqrt{16+4+1}$$

= $\sqrt{21}$
 $\vec{u} = \frac{1}{\sqrt{21}} [4, -2, 1]$
 \vec{u}
 \vec{u}

Definition: The **distance** between \vec{a} and \vec{b} is written $d(\vec{a}, \vec{b})$. It is calculated by $d(\vec{a}, \vec{b}) = ||\vec{a} - \vec{b}||$

Example: Find the distance between $\vec{a} = [2, -1]$ and $\vec{b} = [3, -6]$ $\vec{a} - \vec{b} = [-1, 5]$ $||\vec{a} - \vec{b}|| = \sqrt{1 + 25}$ $= \sqrt{26}$ $d(\vec{a}, \vec{b}) = \sqrt{26}$ Eact: The Triangle Inequality

Fact: The Triangle Inequality For all \vec{u}, \vec{v} in \mathbb{R}^n : $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^n . The angle θ between \vec{u} and \vec{v} is defined to be $0^\circ \le \theta \le 180^\circ$

Fact: For all \vec{u}, \vec{v} in \mathbb{R}^n : $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$

Comment: In \mathbb{R}^4 and higher dimensions, this is a definition of θ .

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.