Example: a) Let \vec{u} be a vector of length 5, in standard position, rotated 30° from the positive x-axis. Find \vec{u} algebraically.

$$
\vec{u}=\left[\frac{5 \sqrt{3}}{2}, \frac{5}{2}\right]
$$

b) Let \vec{v} be a vector of length 7 , in standard position, rotated 135° from the positive x-axis. Find \vec{v} algebraically.

Multiply each side by $\frac{7}{\sqrt{2}}$:

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector's direction represents the direction of the velocity/acceleration/force. The vector's length represents the magnitude of the velocity/acceleration/force.
1.2 Length and Angle

Example: Let $\vec{u}=[1,4,2,-9]$ and $\vec{v}=[2,3,-2,-1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =1(2)+4(3)+2(-2)+(-9)(-1) \\
& =19
\end{aligned}
$$

Example: Calculate:
a) $[1,5] \cdot[2,-3]$
$=1(2)+5(-3)$
$=-13$
b) $[1,5] \cdot[2,-3,0]$ undefined
c) $\left[u_{1}, u_{2}\right] \cdot\left[u_{1}, u_{2}\right]$

$$
=u_{1}^{2}+u_{2}^{2}
$$

Fact: Three Properties of the Dot Product
Let \vec{u}, \vec{v} be in \mathbb{R}^{n}. Then:

1) $\vec{u} \cdot \vec{u} \geq 0$
2) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
3) $\vec{u} \cdot \vec{u}=0$ if and only if $\vec{u}=\overrightarrow{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.

$$
\begin{aligned}
& \text { If } \vec{u} \cdot \vec{u}=0 \text { then } \vec{u}=\overrightarrow{0} \quad \text { (LESS obvious) } \\
& \text { If } \vec{u}=\overrightarrow{0} \text { then } \vec{u} \cdot \vec{u}=0 \quad \text { (MoRt obvious) }
\end{aligned}
$$

Example: Simplify:
a) $(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})$

$$
\begin{aligned}
& =\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v}
\end{aligned}
$$

b) $3 \vec{u} \cdot(-2 \vec{v}+5 \vec{w})$
$=-6 \vec{u} \cdot \vec{v}+15 \vec{u} \cdot \vec{w}$

Definition: The length of \vec{v} is written $\|\vec{v}\|$. If $\vec{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ then $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.
Example: Draw a picture to show that in 2D this is the Pythagorean Theorem.

Example: Calculate:
a) $\|[1,1,1,-2]\|$
$=\sqrt{1+1+1+4}$
$=\sqrt{7}$
b) $\|[3,-1]\|$

$$
\begin{aligned}
& =\sqrt{9+1} \\
& =\sqrt{10}
\end{aligned}
$$

c) $[3,-1] \cdot[3,-1]$

$$
\begin{aligned}
& =9+1 \\
& =10
\end{aligned}
$$

Fact: $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$ for all \vec{v}

Example: Let $\vec{v}=\left[v_{1}, v_{2}, v_{3}\right]$. Simplify $\|-3 \vec{v}\|$.

$$
\begin{aligned}
& =11\left[-3 v_{1},-3 v_{2},-3 v_{3}\right] \| \\
& =\sqrt{9 v_{1}^{2}+9 v_{2}^{2}+9 v_{3}^{2}} \\
& =\sqrt{9\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)} \\
& =\sqrt{9} \sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} \\
& =3 / v v^{1}
\end{aligned}
$$

Length of blue vector $=3$ (length of red veld)

Fact: $\quad\|c \vec{v}||=|c| \quad\|\vec{v}\|$ for all vectors \vec{v} and real numbers c.
Definition: A unit vector is a vector that has length one. Normalizing a vector \vec{v} means finding a unit vector in the same direction as \vec{v}.

Fact: The following vector has length one and the same direction as \vec{v} (provided that $\vec{v} \neq \overrightarrow{0}$):

$$
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}
$$

Example: Normalize $\vec{v}=[4,-2,1]$

$$
\begin{aligned}
&\|\vec{v}\|=\sqrt{16+4+1} \\
&=\sqrt{21} \\
& \vec{u}=\frac{1}{\sqrt{21}}[4,-2,1] \\
& \vec{u} \text { paints in the same direction as } \vec{v}
\end{aligned}
$$

Definition: The distance between \vec{a} and \vec{b} is written $d(\vec{a}, \vec{b})$. It is calculated by $d(\vec{a}, \vec{b})=\|\vec{a}-\vec{b}\|$

Example: Draw a picture to illustrate the above formula.

$$
\vec{a}-\vec{b}
$$

Example: Find the distance between $\vec{a}=[2,-1]$ and $\vec{b}=[3,-6]$

$$
\begin{aligned}
\vec{a}-\vec{b} & =[-1,5] \\
\|\vec{a}-\vec{b}\| & =\sqrt{1+25} \\
& =\sqrt{26} \\
d(\vec{a}, \vec{b}) & =\sqrt{26}
\end{aligned}
$$

Fact: The Triangle Inequality
For all \vec{u}, \vec{v} in $\mathbb{R}^{n}:\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^{n}. The angle θ between \vec{u} and \vec{v} is defined to be $0^{\circ} \leq \theta \leq 180^{\circ}$

Fact: For all \vec{u}, \vec{v} in $\mathbb{R}^{n}: \quad \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

Comment: In \mathbb{R}^{4} and higher dimensions, this is a definition of θ.

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.

