List of Suggested HW Problems
and Full Solutions:
wWW. leahhoward. 6 m
Problems on DLL
Notation
Vectors are sometimes writer in bold font. b is a real number
\vec{b} is a vector
b is a vector

Example: Let $\vec{u}=[-1,2]$ and $\vec{v}=[1,3]$. Find $\vec{u}+\vec{v}$ both algebraically and geometrically.

Example: Graph \vec{u}, \vec{v} and $\vec{u}+\vec{v}$ without a coordinate system.

Example: Let $\vec{v}=[1,3]$. Graph $2 \vec{v},-\vec{v}$ and $-3 \vec{v}$.

$$
\begin{aligned}
& 2 \vec{v}=[2,6] \\
& -\frac{v}{v}=[-1,-3] \\
& -3 \vec{v}=[-3,-9]
\end{aligned}
$$

Definition: The process of multiplying a vector by a real number is called scalar multiplication. It produces a vector that is parallel to the original vector.

Example: Calculate $[2,6]-[3,4]$

$$
\begin{aligned}
& =[2,6]+[-3,-4] \\
& =[-1,2]
\end{aligned}
$$

$$
2
$$

Example: Place \vec{u} and \vec{v} tail to tail. Find the vector that runs from the head of \vec{v} to the head of \vec{u}.

$$
\begin{array}{rl}
? & b a c k w a d s \text { along } \vec{v} \\
& \text { then forwards along } \vec{u} \\
= & -\vec{v}+\vec{u} \\
= & \vec{u}-\vec{v}
\end{array}
$$

Example: Place \vec{u} and \vec{v} tail to tail. Draw the parallelogram formed by \vec{u} and \vec{v}. Label the four diagonals.

Fact: Order doesn't matter when adding vectors. For any vectors \vec{u}, \vec{v} and \vec{w} :
$\vec{u}+\vec{v}=\vec{v}+\vec{u}$
$(\vec{u}+\vec{v})+\vec{w}=(\vec{w}+\vec{u})+\vec{v}$
Example: Let \vec{u}, \vec{v} and \vec{w} be positioned tail to tail to tail. Show geometrically that $(\vec{u}+\vec{v})+\vec{w}=(\vec{w}+\vec{u})+\vec{v}$

Fact: The above example illustrates that we can write $\vec{u}+\vec{v}+\vec{w}$ without any bracketing.

Definition: Consider the expression: \vec{v} in \mathbb{R}^{n}. This means that \vec{v} has n components, and each component is a real number.

Example: Draw $\vec{v}=[1,3,2]$ in \mathbb{R}^{3}.

Definition: The zero vector is written $\overrightarrow{0}$. Each of its components is zero. The zero vector is useful for algebra.

Example: Write the zero vector in \mathbb{R}^{2} and \mathbb{R}^{3}.

$$
\begin{array}{ll}
\ln \mathbb{R}^{2}: & \overrightarrow{0}=[0,0] \\
\ln \mathbb{R}^{3}: & \overrightarrow{0}=[0,0,0]
\end{array}
$$

Example: Let \vec{u} be in \mathbb{R}^{2}. Show (prove) that $\vec{u}+(-\vec{u})=\overrightarrow{0}$.

$$
\begin{aligned}
\text { Let } \vec{u} & =\left[u_{1}, u_{2}\right] \\
\vec{u}+(-\vec{u}) & =\left[u_{1}, u_{2}\right]+\left[-u_{1},-u_{2}\right] \\
& =[0,0] \\
& =\overrightarrow{0}
\end{aligned}
$$

Example: Solve for \vec{x} given that $7 \vec{x}-\vec{a}=3(\vec{a}+4 \vec{x})$.

$$
\begin{aligned}
7 \vec{x}-\vec{a} & =3 \vec{a}+12 \vec{x} \\
-5 \vec{x}-\vec{a} & =3 \vec{a} \\
-5 \vec{x} & =4 \stackrel{\rightharpoonup}{a} \\
\vec{x} & =-\frac{4}{5} \vec{a}
\end{aligned}
$$

Definition: Consider the statement:
\vec{w} is a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ with coefficients -3 and 2.
This means that $\vec{w}=-3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
Example: Let $\vec{w}=-3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
a) Find \vec{w} algebraically.

$$
\begin{aligned}
\bar{W} & =\left[\begin{array}{c}
-3 \\
-3
\end{array}\right]+\left[\begin{array}{l}
0 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
\end{aligned}
$$

b) Find \vec{w} geometrically.

Example: Write $\vec{w}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ by graphing.

Think of \vec{u} and \vec{r} as the axes.

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
-3
\end{array}\right]=k\left[\begin{array}{l}
0 \\
2
\end{array}\right]} \\
-3=k(2) \\
\frac{-3}{2}=k
\end{gathered}
$$

$$
\begin{gathered}
\vec{w}=4 \vec{h}-\frac{3}{2} \stackrel{\rightharpoonup}{v} \\
\text { well do this algebraically in } C h .2 \\
\text { Let }\left[\begin{array}{l}
4 \\
1
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{gathered}
$$

