Example: Let $\vec{u} = [-1, 2]$ and $\vec{v} = [1, 3]$. Find $\vec{u} + \vec{v}$ both algebraically and geometrically.

Example: Graph \vec{u}, \vec{v} and $\vec{u} + \vec{v}$ without a coordinate system.

Example: Let $\vec{v} = [1, 3]$. Graph $2\vec{v}, -\vec{v}$ and $-3\vec{v}$.

Definition: The process of multiplying a vector by a real number is called **scalar multiplication**. It produces a vector that is parallel to the original vector.

Example: Calculate
$$[2, 6] - [3, 4]$$

= $[2, 6] + [-3, -4]$
= $[-1, 2]$

Example: Place \vec{u} and \vec{v} tail to tail. Find the vector that runs from the head of \vec{v} to the head of \vec{u} .

$$i = backwards along \overline{v}$$

$$= -\overline{v} + \overline{u}$$

$$= \overline{u} - \overline{v}$$

Example: Place \vec{u} and \vec{v} tail to tail. Draw the parallelogram formed by \vec{u} and \vec{v} . Label the four diagonals.

Fact: Order doesn't matter when adding vectors. For any vectors \vec{u}, \vec{v} and \vec{w} : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ $(\vec{u} + \vec{v}) + \vec{w} = (\vec{w} + \vec{u}) + \vec{v}$

Example: Let \vec{u}, \vec{v} and \vec{w} be positioned tail to tail to tail. Show geometrically that $(\vec{u} + \vec{v}) + \vec{w} = (\vec{w} + \vec{u}) + \vec{v}$

Fact: The above example illustrates that we can write $\vec{u} + \vec{v} + \vec{w}$ without any bracketing.

Definition: Consider the expression: \vec{v} in \mathbb{R}^n . This means that \vec{v} has *n* components, and each component is a real number.

Example: Draw $\vec{v} = [1, 3, 2]$ in \mathbb{R}^3 .

Definition: The **zero vector** is written $\vec{0}$. Each of its components is zero. The zero vector is useful for algebra.

Example: Write the zero vector in \mathbb{R}^2 and \mathbb{R}^3 .

 $\begin{bmatrix} n & \mathbb{R}^{2} & \vec{0} = [0, 0] \\ ln & \mathbb{R}^{3} = \vec{0} = [0, 0, 0] \\ \text{Example: Let } \vec{u} \text{ be in } \mathbb{R}^{2}. \text{ Show (prove) that } \vec{u} + (-\vec{u}) = \vec{0}. \\ (et & \mathcal{U} = [\mathcal{U}_{1,3} \mathcal{U}_{2}] \\ \mathcal{U} + (-\vec{u}) = [\mathcal{U}_{1,3} \mathcal{U}_{2}] + [-\mathcal{U}_{1,3} - \mathcal{U}_{2}] \\ = [0, 0] \\ = \vec{0}, 0 \end{bmatrix}$

Example: Solve for \vec{x} given that $7\vec{x} - \vec{a} = 3(\vec{a} + 4\vec{x})$.

$$\begin{aligned} \overrightarrow{7x} - \overrightarrow{a} &= 3\overrightarrow{a} + 12\overrightarrow{3x} \\ -5\overrightarrow{x} &= -\overrightarrow{a} &= 3\overrightarrow{a} \\ -5\overrightarrow{x} &= -4\overrightarrow{a} \\ \overrightarrow{x} &= -\frac{4}{5}\overrightarrow{a} \end{aligned}$$

Definition: Consider the statement: \vec{w} is a **linear combination** of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\2 \end{bmatrix}$ with coefficients -3 and 2. This means that $\vec{w} = -3\begin{bmatrix} 1\\1 \end{bmatrix} + 2\begin{bmatrix} 0\\2 \end{bmatrix}$. **Example:** Let $\vec{w} = -3\begin{bmatrix} 1\\1 \end{bmatrix} + 2\begin{bmatrix} 0\\2 \end{bmatrix}$.

a) Find \vec{w} algebraically.

$$\overline{W} = \begin{bmatrix} -3\\ -3 \end{bmatrix} + \begin{bmatrix} 0\\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} -3\\ 1 \end{bmatrix}$$

b) Find \vec{w} geometrically.

Example: Write
$$\vec{w} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 as a linear combination of $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ by graphing.

$$\overline{W} = 4\overline{u} - \frac{3}{2}\overline{V}$$
We'll do this algebraically in Ch. 2
Let $[4] = C_1[1] + C_2[2]$