Can't

Definition: Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$. The **inverse of** T is a transformation $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ such that: $T^{-1}(T(\vec{x})) = \vec{x}$ and $T(T^{-1}(\vec{x})) = \vec{x}$ for all vectors \vec{x} in \mathbb{R}^n .

Comment: Note that T^{-1} is only defined when [T] is invertible.

Fact: The standard matrix for T^{-1} is the inverse of the standard matrix for T.

Example: Rewrite this fact using appropriate notation.

 $\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{-1}$

Example: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation by -30° . Find $[T^{-1}]$.

Method [

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} c_{0}s\Theta - sin\Phi \\ sin\Phi & GrP \end{bmatrix} \Theta = -30^{\circ}$$

$$= \begin{bmatrix} \sqrt{3}/2 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{-1}$$

$$det \begin{bmatrix} T \end{bmatrix} = \frac{3}{4} + \frac{1}{4} = 1$$

$$\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} \sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
Method 2:

$$T^{-1} : rotation by 30^{\circ}$$

$$\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -\frac{1}{2} \\ \frac{1}{2} & \sqrt{3}/2 \end{bmatrix}$$

Example: Let *T* be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 . Suppose: $T(\vec{u}+\vec{v}) = T(\vec{u}) + T(\vec{v})$ $\vec{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $T(\vec{v}_1) = \begin{bmatrix} -5\\8 \end{bmatrix}$, $T((\vec{u}) = CT(\vec{u})$

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ and } T(\vec{v}_1) = \begin{bmatrix} -5\\8 \end{bmatrix},$$
$$\vec{v}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \text{ and } T(\vec{v}_2) = \begin{bmatrix} 2\\2 \end{bmatrix}, \text{ and}$$
$$\vec{v}_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \text{ and } T(\vec{v}_3) = \begin{bmatrix} -1\\3 \end{bmatrix}.$$
Find $T(\begin{bmatrix} 7\\3\\6 \end{bmatrix}).$

$$\begin{bmatrix} 4 \\ 3 \\ 6 \end{bmatrix} = C_{1}V_{1} + C_{2}V_{2} + C_{3}V_{3}$$

$$\begin{bmatrix} C_{1} & C_{2} & C_{3} \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 6 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 6 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 1 \\ 0 \end{bmatrix}$$

$$C_{1} = 2 \quad C_{2} = 5 \quad C_{3} = 1$$

$$T\left(\begin{bmatrix} \frac{7}{4}\\ \frac{7}{6}\end{bmatrix}\right) = t\left(2\vec{v}_{1} + S\vec{v}_{2} + \vec{v}_{3}\right)$$

$$= T\left(2\vec{v}_{1}\right) + T\left(S\vec{v}_{2}\right) + T\left(\vec{v}_{3}\right)$$

$$= 2 T\left(\vec{v}_{1}\right) + S T\left(\vec{v}_{2}\right) + T\left(\vec{v}_{3}\right)$$

$$= 2 \left[\frac{-S}{8}\right] + S \left[\frac{2}{2}\right] + \left[\frac{-1}{3}\right]$$

$$= \left[\frac{-1}{2}\right]_{132}$$

Chapter 4: Eigenvalues and Eigenvectors

4.1 Eigenvalues and Eigenvectors, 2×2 Matrices

Definition: Let A be an $n \times n$ matrix. Suppose $A\vec{x} = \lambda \vec{x}$ for some vector $\vec{x} \neq \vec{0}$ and some real number λ . Then λ is an **eigenvalue of** A and \vec{x} is an **eigenvector of** A.

Example: Show that
$$\vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 is an eigenvector of $A = \begin{bmatrix} 1 & -3 \\ 1 & 5 \end{bmatrix}$.
 $A \vec{x} = \begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $= \begin{bmatrix} 4 \\ -4 \end{bmatrix}$
 $= 4 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $= 4 \vec{x}$

Comment: We say that $\vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of *A* corresponding to eigenvalue $\lambda = 4$.

Comment: Note that $A\vec{0} = \lambda \vec{0}$ is trivial. Therefore the zero vector is never considered to be an eigenvector.

$$A \overline{O} = \overline{O}$$

= $\lambda \overline{O}$ obvious

Example: Find all eigenvectors of $A = \begin{bmatrix} 3 & -2 \\ -3 & 4 \end{bmatrix}$ corresponding to $\lambda = 6$.

Want
$$A\bar{x} = 6\bar{x}$$

 $A\bar{x} = 6I\bar{x}$
 $A\bar{x} - 6I\bar{x} = \bar{0}$
 $(A - 6I\bar{x} = \bar{0})$
 $(A - 6I\bar{x} = \bar{0})$
 $Solve [A - 6I\bar{0}]\bar{0}$
 $A - 6I = \begin{bmatrix} 3 & -2 \\ -3 & 4 \end{bmatrix} - 6\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -3 & 4 \end{bmatrix} + \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ -3 & -2 \end{bmatrix}$
 $Shorfart$
 $\begin{bmatrix} A - 6I\bar{0} \\ -3 & -2 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} -3 & -2 \\ -3 & -2 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} -3 & -2 \\ -3 & -2 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} -3 & -2 \\ -3 & -2 \\ 0 \end{bmatrix}$
 $R_{2} + 3R_{1}$
 $\begin{bmatrix} 1 & \frac{2}{3} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -2 \\ 0 \end{bmatrix}$
 $R_{2} + 3R_{1}$
 $R_{2} + 3R_{1}$
 $R_{2} + 3R_{1}$
 $R_{2} + 3R_{1} = \begin{bmatrix} -2/3 \\ 1 \end{bmatrix} + (t + 0)$
 $R_{2} - \frac{2}{3} + \frac{2$

Fact: To find all the eigenvectors corresponding to eigenvalue λ : Solve the system $[A - \lambda I \mid \vec{0}]$. Remember to exclude $\vec{x} = \vec{0}$.

Definition: The eigenspace E_{λ} is the set of all eigenvectors of A corresponding to eigen-Definition. The eigenspace E_{λ} is the set of an eigenvectors of A corresponding to eigenvalue λ , plus the zero vector. It's a subspace of \mathbb{R}^n $E_{\lambda} = \{eigenvectors \ 6nespending b \ 1\}$ line through origin of $e^{it_{-1}}$ plane through origin $e^{it_{-1}}$ Example: Find a basis for E_3 given $A = \begin{bmatrix} 4 & 1 & -2 \\ -3 & 0 & 6 \\ 2 & 2 & -1 \end{bmatrix}$. [A- XI]] A=3: [A-3]] $\begin{array}{c} \begin{bmatrix} 1 & 1 & -2 & | & 0 \\ -3 & -3 & 6 & | & 0 \\ 2 & 2 & -4 & | & 0 \end{bmatrix} \\ \begin{array}{c} x_1 & x_2 & x_3 \\ 1 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} R_2 + 3R_1 \\ R_3 - 2R_1 \\ 1 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} R_3 - 2R_1 \\ 1 & 1 & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} x_1 & x_2 & x_3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} x_1 & x_2 & x_3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} R_2 + 3R_1 \\ R_3 - 2R_1 \\ 1 & 1 & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} R_2 + 3R_1 \\ R_3 - 2R_1 \\ 1 & 1 & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} x_1 & x_2 \\ R_3 - 2R_1 \\ 1 & 1 & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \begin{array}{c} R_1 + 2R_1 \\ R_2 + 3R_1 \\ R_3 - 2R_1 \\ 1 & 1 & -2$ $\chi_1 + \chi_2 - 2\chi_2 = 0 \implies \chi_1 = -A + 2t$ $\vec{x} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \Delta + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} t$ $(\vec{x} \neq \vec{o})$ Basis for $E_3 = \left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$

Example: Find a basis for
$$E_0$$
 given $A = \begin{bmatrix} 4 & 1 & -3 \\ 0 & 0 & 2 \\ 0 & 0 & -3 \end{bmatrix}$.
O (a) be a
 $eigenvalue$
 $\begin{bmatrix} A - \lambda \Box & 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} A + \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 4 & 1 & -3 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & \frac{1}{4} & \frac{1}{4} \\ 1 & \frac{1}{4} \\ 1 & \frac{1}{4} \\ 1 & \frac{1}{4} \\ 2 & \frac{1}{4} \end{bmatrix}$
Basis for $f_0 = \begin{bmatrix} 1 & \frac{1}{4} \\ 0 \end{bmatrix}$