Definition: The standard matrix for $T$ is the matrix that performs $T$. It's written $[T]$.

Fact: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m}$ be a linear transformation. To calculate $[T]$ :
Place $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ in the first column and place $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ in the second column. In other words, $[T]=\left[\left.T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) \right\rvert\, T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)\right]$.

Fact: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then:

$$
[T]=\left[T\left(\left[\begin{array}{c}
1 \\
0 \\
0 \\
\cdots \\
0
\end{array}\right]\right) \quad T\left(\left[\begin{array}{c}
0 \\
1 \\
0 \\
\ldots \\
0
\end{array}\right]\right) \quad \ldots \quad T\left(\left[\begin{array}{c}
0 \\
0 \\
0 \\
\ldots \\
1
\end{array}\right]\right)\right] .
$$

Comment: The formula for $[T]$ works because $T$ is linear. $T(c \bar{u})=c T(\bar{u})$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
= & T\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
= & T\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
= & x\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+y T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
= & \left.\left.T\left(\begin{array}{l}
1 \\
0
\end{array}\right]\right) T\right]
\end{aligned}
$$

Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector in the $y$-axis. Find:
a) $[T]$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \left.[T]\left(\begin{array}{l}
-1 \\
0 \\
1
\end{array}\right)\right]
\end{aligned}
$$



b) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$=\left[\begin{array}{c}-x \\ y\end{array}\right]$


Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector in the line $y=x$. Find $[T]$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
T
\end{array}\right]=\left[\left(\begin{array}{l}
0 \\
1
\end{array}\right]\right) }
\end{aligned}
$$



Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates a vector by angle $\theta$ (counterclockwise). Find $[T]$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
\sin \theta \\
\sin \theta
\end{array}\right] \\
& \xrightarrow{2 \theta} \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right] \\
& {[T]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}
\end{aligned}
$$

Example: Rotate $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ by $30^{\circ}$ clockwise.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]_{\theta=-30^{\circ}} } \\
= & \frac{1}{2}\left[\begin{array}{cc}
\sqrt{3} & 1 \\
-1 & \sqrt{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
= & \frac{1}{2}\left[\begin{array}{l}
\sqrt{3}+1 \\
-1
\end{array}\right]
\end{aligned}
$$



Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that projects a vector on the line $l$ through the origin with direction vector $\vec{d}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Find $[T]$.


$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) & =\operatorname{proj}_{\left[\begin{array}{l}
a \\
b
\end{array}\right]}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{\left\|\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{a}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}}\left[\begin{array}{l}
a^{2} \\
a b
\end{array}\right]
\end{aligned}
$$

$$
[T]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}
a^{2} & a b \\
a b & b^{2}
\end{array}\right] \not \text { Know this }
$$

Comment: It's recommended that you know the following two standard matrices:
Rotation by angle $\theta$ (counterclockwise): $\quad[T]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
Projection onto the line $\vec{x}=t\left[\begin{array}{l}a \\ b\end{array}\right]$ :
$[T]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}a^{2} & a b \\ a b & b^{2}\end{array}\right]$

Definition: Suppose we apply $T_{1}$ then $T_{2}$ to $\vec{x}$. This is a composition of transformations. It can be written $T_{2}\left(T_{1}(\vec{x})\right)$ or $\left(T_{2} \circ T_{1}\right)(\vec{x})$.
We calculate it as $\left[T_{2}\right]\left[T_{1}\right] \vec{x}$.

Example: Let $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}2 x \\ -y\end{array}\right]$. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by $45^{\circ}$. Find $[S \circ T]$.

$$
[S]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]_{\theta=45^{\circ}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$$
[T]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
\text { coefficients }
\end{array}\right]
$$



$$
\begin{aligned}
{[S][T] } & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Definition: Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The inverse of $T$ is a transformation $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that: $T^{-1}(T(\vec{x}))=\vec{x}$ and $T\left(T^{-1}(\vec{x})\right)=\vec{x}$ for all vectors $\vec{x}$ in $\mathbb{R}^{n}$.

Comment: Note that $T^{-1}$ is only defined when $[T]$ is invertible.


Fact: The standard matrix for $T^{-1}$ is the inverse of the standard matrix for $T$.

Example: Rewrite this fact using appropriate notation.


Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by $-30^{\circ}$. Find $\left[T^{-1}\right]$.

