3.6 Linear Transformations

Definition: A transformation is an operation that turns a vector into another vector.

Example: The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates a vector by 90° counterclockwise. Graph the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ before and after the transformation.

Definition: The vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is called the image of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ under T.
We can write $T\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ or $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.

Definition: The matrix transformation T_{A} multiplies a vector on the left by matrix A. In other words, $T_{A}(\vec{x})=A \vec{x}$.

Example: a) Let $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 1 & -3\end{array}\right]$. Find $T_{A}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)$.

b) Find A given $T_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x+y \\ x-y \\ 3 x+3 y\end{array}\right]$.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -1 \\
3 & 3
\end{array}\right]
$$

Definition: A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if: * $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^{n} and * $T(c \vec{u})=c T(\vec{u})$ for all real numbers c and all vectors \vec{u} in \mathbb{R}^{n}.
$T(\vec{x})=A \vec{x}$

Fact: The transformation T is linear if and only if T is a matrix transformation.
Example: Show that T is linear given $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}y \\ x\end{array}\right]$.

$$
\begin{aligned}
& \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
x
\end{array}\right] \\
& \Rightarrow T \text { is a matrix transformation } \\
& \Rightarrow T \text { is linear }
\end{aligned}
$$

Example: Show that T is not linear given $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}y \\ 1+x\end{array}\right]$.

$$
\begin{aligned}
& {[]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
\text { Al } x
\end{array}\right]} \\
& \text { No matrix } \\
& \text { M } \\
& \text { exists so that } \\
& M\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
1+x
\end{array}\right] \\
& \text { Note: } M \text { can entail numbers but } \\
& \text { not variables. } \\
& T \text { is not }
\end{aligned}
$$

Recap of 3.5
Ex: $\quad A=\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1\end{array}\right]$
Find a basis for:
a) $\operatorname{row}(A)$
nonzero rows of REF/RREF

$$
R_{3}-R_{2}\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]_{R \in F}
$$

Basis fo $\operatorname{now}(A)=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right],\left[\left.\begin{array}{lll}0 & 1 & -1\end{array} \right\rvert\,\right.$ $\left[\begin{array}{llll}0 & 0 & 0 & -2\end{array}\right]$
b) $C_{0}(A)$
$\left[\begin{array}{lll}11 & & \\ & (1) & -2)\end{array}\right]$
$R \in F$
Use columns 1,2 and 4 of A
Basis fer $G\left(C_{A}\right)=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$
c) $\operatorname{null}(A) \lessdot\{\vec{x} \mid A \bar{x}=\overrightarrow{0}\}$

$$
\left[\begin{array}{l|l}
A & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]
$$

$$
\text { Basis for } \operatorname{null}(A)=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& R_{1}-R_{2} \\
& \frac{R_{3}}{-2}\left[\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& R_{2}-R_{3}\left[\begin{array}{cccc|c}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
& & 1 & 1 & 0
\end{array}\right]_{\text {RREF }} \\
& x_{3}=t \\
& x_{1}+x_{3}=0 \Rightarrow x_{1}=-t \\
& x_{2}=t \\
& x_{4}=0 \\
& \vec{x}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] t
\end{aligned}
$$

