Final Exam
Mon April 15 1:30 pm
(three hows)
TEC 174 and 175

Test 2
Fri March 1
2.3-2.4, 3.1-3.3 (6 Questions)

Bring calculate
Bring music earplugs
Practice Problems on website
3.5 Subspaces and Basis Cont'd

Subspace of \mathbb{R}^{n}
= span of one or mere vectors
egg. line through origin
plane through origin all of \mathbb{R}^{3}

Basis for a subspace S
= set of direction vectors for S that contains the minimum \# of vectors

Rowspale of $A=$ spar of the rows of A
Glumnspace of $A=$ Glumns

Example: Let $A=\left[\begin{array}{ccc}2 & 3 & 7 \\ 4 & 7 & 10 \\ 8 & 17 & 8\end{array}\right]$. Find a basis for $\operatorname{row}(A)$ consisting of rows of A.
Note: This is different from part a) of the previous example, because that answer was not phrased in terms of rows of A.

$$
\operatorname{row}(A)=\operatorname{col}\left(A^{\top}\right)
$$

$$
\begin{array}{ll}
\text { Find a basis } & A^{\top}=\left[\begin{array}{ccc}
2 & 4 & 8 \\
3 & 7 & 17 \\
7 & 10 & 8
\end{array}\right]
\end{array}
$$

$$
\frac{R_{1}}{2}\left[\begin{array}{ccc}
1 & 2 & 4 \\
3 & 7 & 17 \\
7 & 10 & 8
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}-3 R_{1} \\
& R_{3}-7 R_{1}
\end{aligned}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & -4 & -20
\end{array}\right]
$$

$$
R_{3}+4 R_{2}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right]_{R \in F}
$$

$$
\begin{aligned}
\text { Basis for col(} \left.A^{\top}\right)= & \left\{\text { Glumns } 1 \text { and } 2 \text { of } A^{\top}\right\} \\
= & \left\{\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{c}
4 \\
7 \\
10
\end{array}\right]\right\} \\
\text { or } & \left\{\left[\begin{array}{lll}
2 & 3 & 7
\end{array}\right],\left[\begin{array}{lll}
4 & 7 & 10
\end{array}\right]\right\}
\end{aligned}
$$

Example: Let $A=\left[\begin{array}{ccc}1 & 4 & 6 \\ 2 & 8 & 12\end{array}\right]$. Find a basis for $\operatorname{null}(A)$.
null (A)

$$
=\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\}
$$

Solve $A^{\prime} \bar{x}=\overrightarrow{0}$
Each parameter produces a basis vector.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 4 & 6 & 0 \\
2 & 8 & 12 & 0
\end{array}\right]} \\
& R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & 0 \\
0 & 4 & 6^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { REF } \\
& \hat{x}_{2}=s \quad \prod_{3}=t \\
& x_{1}+4 x_{2}+6 x_{3}=0 \Rightarrow x_{1}=-4 s-6 t \\
& \vec{x}=\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-6 \\
0 \\
1
\end{array}\right] t \\
& \text { Basis for } \operatorname{sull}(A)=\left\{\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-6 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Example: Find a basis for $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right],\left[\begin{array}{c}1 \\ 5 \\ 24\end{array}\right]\right)$.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 6 \\
1 & 5 & 24
\end{array}\right]
$$

Find a basis for $\operatorname{row}(A)$.

$$
\begin{array}{ll}
\begin{array}{lll}
R_{2}-R_{1} \\
R_{3}-R_{1}
\end{array} & {\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 6 \\
0 & 4 & 24
\end{array}\right]} \\
R_{3}-4 R_{2}
\end{array}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{array}\right]_{R \in F} .
$$

$$
\left.\begin{array}{rl}
\text { Basis for now }(A) & =\{\text { nonzero rows of } R \in F \mid R R \in F
\end{array}\right\}
$$

Definition: Given a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n}, the coordinate vector of \vec{v} with respect to \mathcal{B} is
$[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]$ where $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}$.
Example: Find $[\vec{v}]_{\mathcal{B}}$ for $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$ and $\vec{v}=\left[\begin{array}{c}5 \\ 15 \\ 28\end{array}\right]$.

$$
\begin{aligned}
& \vec{v}_{1} \xlongequal[v_{2}]{ } \uparrow \vec{v}_{3} \\
& C_{1} \bar{V}_{1}+C_{2} \bar{v}_{2}+C_{3} \vec{V}_{3}=\bar{v} \\
& \begin{array}{l}
C_{1} C_{2} \\
C_{3} \\
{\left[\begin{array}{ccc|c}
1 & 1 & 1 & S \\
2 & 5 & 1 & 15 \\
3 & 6 & 4 & 28
\end{array}\right]}
\end{array} \\
& \left.\begin{array}{ccc|c}
& \vdots & & \\
c_{1} & c_{2} & c_{3} & \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4
\end{array}\right] \\
& \text { REF } \\
& c_{1}=-2, \quad c_{2}=3, \quad c_{3}=4 \\
& {[\vec{v}]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]} \\
& =\left[\begin{array}{c}
-2 \\
3 \\
4
\end{array}\right]
\end{aligned}
$$

Definition: The dimension of a subspace S is the number of vectors in a basis for S. It's written $\operatorname{dim}(S)$.

Comment: a) The standard basis for $\mathbb{R}^{3}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Therefore $\operatorname{dim} \mathbb{R}^{3}=3$.
b) $\operatorname{dim} \mathbb{R}^{n}=n$
c) $\operatorname{dim}\left(\right.$ plane through the origin in $\left.\mathbb{R}^{n}\right)=2$
d) $\operatorname{dim}\left(\right.$ line through the origin in $\left.\mathbb{R}^{n}\right)=1$

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.

Comment: For any matrix $A: \operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))$.

Definition: The nullity of a matrix A is the number of parameters in the solution to $A \vec{x}=\overrightarrow{0}$. In other words, $\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{null}(A))$.

Example: Let $A=\left[\begin{array}{llll}1 & 5 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

$$
\begin{aligned}
& R_{3}-R_{2}\left[\begin{array}{cccc}
1 & 5 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] R \in F \\
& \operatorname{rank}(A)
\end{aligned}=\text { \# of nonzero rows in REF/RREF }
$$

nullity $(A)=\#$ of parameters in solution to $A \bar{x}=\overrightarrow{0}$ $=1$

Fact: For any matrix $A: \operatorname{rank}(A)+\operatorname{nullity}(A)=$ number of columns in A.
Example: Let's phrase this fact in terms of the columns of A.

$$
\binom{\text { \# of columns }}{\text { with pivots }}+\binom{\text { \# of column }}{\text { without pivots }}=\text { \# of columns }
$$

In Section 2.2 we said:
If a system is cerristent then

$$
\text { rank }+ \text { (\# of parameters in solutai) } \# \text { of variables }
$$

The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:
a) A is invertible.
b) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^{n}.
c) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
d) The RREF of A is I.
e) A is a product of elementary matrices.
f) $\operatorname{rank}(A)=n$.
g) $\operatorname{nullity}(A)=0$.
h) The columns of A are linearly independent.
i) The span of the columns of A is \mathbb{R}^{n}.
j) The columns of A form a basis for \mathbb{R}^{n}.
k) The rows of A are linearly independent.
l) The span of the rows of A is \mathbb{R}^{n}.
m) The rows of A form a basis for \mathbb{R}^{n}.
n) $\operatorname{det} A \neq 0$.
o) 0 is not an eigenvalue of A.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given $n \times n$ matrix, the fifteen statements are all true or all false.

Example: Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

$$
\begin{aligned}
& \left.A=\begin{array}{lll}
1 & 2 & 3 \\
\hline & 5 & 6 \\
\hline & 1 & 4
\end{array}\right] \\
& \operatorname{det} A=1\left|\begin{array}{ll}
5 & 6 \\
1 & 4
\end{array}\right|-2\left|\begin{array}{ll}
1 & 6 \\
1 & 4
\end{array}\right|+3\left|\begin{array}{ll}
1 & 5 \\
1 & 1
\end{array}\right|\left[\begin{array}{l}
\pm-+ \\
\pm-+
\end{array}\right] \\
& =1(14)-2(-2)+3(-4) \\
& =6 \\
& \neq 0 \\
& \text { Yes }
\end{aligned}
$$

