Example: Is the following set of vectors a subspace of \mathbb{R}^{3} ?

$$
\begin{aligned}
&\left.=\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right]: z=x+1\right\} \\
&=\left\{\left[\begin{array}{l}
x \\
y \\
x \neq 1
\end{array}\right]\right\} \\
& \neq\left\{x\left[\begin{array}{l}
\# \\
\# \\
\#
\end{array}\right]+y\left[\begin{array}{l}
\# \\
\# \\
\#
\end{array}\right]\right\}
\end{aligned}
$$

Example: Is the following set of vectors a subspace of \mathbb{R}^{2} ?

$$
\begin{aligned}
S & =\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, y=0\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right]\right\} \\
& =\left\{x\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \\
& =\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \quad Y E S
\end{aligned}
$$

Let's define three subspaces associated with a matrix A.
Definition: The rowspace of A is the span of the rows of A, written $\operatorname{row}(A)$. The columnspace of A is the span of the columns of A, written $\operatorname{col}(A)$.
The nullspace of A is $\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\}$, written $\operatorname{null}(A)$.
Example: Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 2 & 1\end{array}\right]$.
a) Is $\left[\begin{array}{c}6 \\ 10\end{array}\right]$ in $\operatorname{col}(A)$?

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 4
\end{array}\right]_{R \in F}
$$

b) Is $[1,2,5]$ in $\operatorname{row}(A)$?

$$
\left.\begin{array}{c}
c_{1}\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]+c_{2}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right] \\
{\left[\begin{array}{ll|l}
c_{1} & c_{2} & 1 \\
2 & 2 & 2 \\
0 & 1 & 2
\end{array}\right]} \\
\sim
\end{array} \begin{array}{lll|l}
1 & 1 & 1 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right]_{R \in F} .
$$

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
10
\end{array}\right] \\
& {\left[\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
1 & 2 & 0 \\
1 & 2 & 1 \\
1 & 1 & 10
\end{array}\right]} \\
& \begin{array}{c}
\text { Solvable } \\
\Rightarrow \text { Yes }
\end{array}
\end{aligned}
$$

c) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{null}(A)$?

Definition: A set of vectors \mathcal{B} is a basis for a subspace S if: $\operatorname{span}(\mathcal{B})=S$ and \mathcal{B} is linearly independent.

Comment: Let's rephrase this. A set \mathcal{B} is a basis for a subspace S if: \mathcal{B} is a set of direction vectors for S containing the minimum number of vectors.

Comment: a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.

b) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.

c) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 8\end{array}\right]\right\}$ is not a basis for \mathbb{R}^{2}.
$\operatorname{span}\left(\left[\begin{array}{l}3 \\ 4\end{array}\right]\left[\begin{array}{l}{[} \\ 8\end{array}\right]\right) \neq \mathbb{R}^{2}$
ectods are parallel
d) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right]\right\}$ is not a basis for \mathbb{R}^{2}.

$$
\begin{aligned}
& \operatorname{span}\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right) \neq \mathbb{R}^{2} \\
& \text { not enough vectors }
\end{aligned}
$$

e) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is not a basis for \mathbb{R}^{2}.

Example: Let $A=\left[\begin{array}{ccc}2 & 3 & 7 \\ 4 & 7 & 10 \\ 8 & 17 & 8\end{array}\right]$. Find a basis for: a) $\operatorname{row}(A)$
Use nonzero rows of REF|RREF

$$
R_{2}-2 R_{1}
$$

$$
R_{3}-4 R_{1}
$$

$$
\left[\begin{array}{ccc}
2 & 3 & 7 \\
0 & 1 & -4 \\
0 & 5 & -20
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
2 & 3 & 7 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right]_{R \in F}
$$

$$
R_{3}-s R_{2}
$$

$$
\text { Basis fer } \operatorname{row}(A)=\left\{\left[\begin{array}{lll}
2 & 3 & 7
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right]\right\}
$$

b) $\operatorname{col}(A)$

Comment: In general, performing a row operation changes the columnspace of a matrix. We cannot use the nonzero columns of the REF/RREF to form a basis for $\operatorname{col}(A)$.

