Definition: An elementary matrix represents a row operation.
To identify which operation, consider how I has been transformed. For example:
$E=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ represents $2 R_{1} \quad-\left[=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right.$
$E=\left[\begin{array}{cc}1 & 0 \\ 0 & -4\end{array}\right]$ represents $-4 R_{2}$
$E=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ represents $R_{2}+3 R_{1}$
$E=\left[\begin{array}{cc}1 & -5 \\ 0 & 1\end{array}\right] \underset{\sim}{\text { represents }} R_{1}-5 R_{2}$
$E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ represents $R_{1} \leftrightarrow R_{2}$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ represents $R_{2} \leftrightarrow R_{3}$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right]$ represents $R_{2}+6 R_{3}$

Example: State the row operation that is represented by the elementary matrix. Then find the inverse matrix.
a) $E_{1}=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { represents } 3 R_{1} \\
& \qquad \frac{1}{3} R_{1} \text { woes it } \\
& E_{1}^{-1}=\left[\begin{array}{ll}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

b) $E_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
E_{2}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

c) $E_{3}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { represents } R_{2}+2 R_{1} \\
& R_{2}-2 R_{1} \text { undoes it } \\
& E_{3}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Fact: An elementary matrix acts on the left of a matrix. When an elementary matrix is multiplied on the left of A, it performs the associated row operation on A. For example:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
2 a & 2 b \\
c & d
\end{array}\right]
$$

Example: Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$. Write A and A^{-1} as a product of elementary matrices.

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right] \quad E_{1}^{-1}=\left[\begin{array}{ll}
2 & 2 R_{1} \\
0 & 0 \\
0 & 1
\end{array}\right] \\
& R_{1}-\frac{1}{2} R_{2} \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{cc}
\left(R_{1}+\frac{1}{2} R_{2}\right) \\
1 & \frac{2}{2} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
A^{-1}=E_{2} E_{1}
$$

Example: Let $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]$. Write A and A^{-1} as a product of elementary matrices.

$$
\begin{aligned}
& \frac{R_{1}}{2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
& E_{1}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right] E_{1}^{-1}=\left[\begin{array}{ll}
\left(2 R_{1}\right) \\
2 & 0 \\
0 & 1
\end{array}\right] \\
& R_{2}-R_{1}\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{ll}
\left.R_{2}+R_{1}\right) \\
1 & 0 \\
1 & 1
\end{array}\right] \\
& \frac{R_{2}}{(-1)}\left[\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right] \\
& E_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] E_{3}^{-1}=\left[\begin{array}{cc}
-R_{2}
\end{array}\right) \\
& R_{1}-2 R_{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& E_{4}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] E_{4}^{-1}=\left[\begin{array}{ll}
\left(R_{1}+2 R_{2}\right) \\
0 & 2 \\
0 & 1
\end{array}\right] \\
& \underbrace{E_{4} E_{3} E_{2} E_{1} A}_{A^{-1}}=I \\
& A^{-1}=E_{4} E_{3} E_{2} E_{1} \\
& A=\left(A^{-1}\right)^{-1} \\
& =\left(E_{4} E_{3} E_{2} E_{1}\right)^{-1} \\
& =E_{101} 1^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}
\end{aligned}
$$

The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:
a) A is invertible.
b) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^{n}.
c) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
d) The RREF of A is I.
e) A is a product of elementary matrices.

Comment: Consider the Fundamentel Theorem of Invertible Matrices. For a given $n \times n$ matrix, the five statements are all true or all false.

Example: Consider the Fundamental Theorem of Invertible Matrices. Which of the five statements are true for A ?
a) $A=\left[\begin{array}{ll}1 & 4 \\ 6 & 9\end{array}\right]$

$$
\operatorname{det} A \neq 0
$$

$\Rightarrow A$ is in vest able

$$
\text { All five statements are true for } A \text {. }
$$

b) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$

$$
\Rightarrow A \text { is not invertible }
$$

3.4 LU Factorization

Definition: An upper triangular matrix is a square matrix with zeros below the main diagonal. An example is $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$.

Definition: A lower triangular matrix is a square matrix with zeros above the main

Definition: A unit lower triangular matrix is lower triangular and has ones on the main diagonal. An example is

Definition: The LU Factorization of a square matrix A is $A=L U$, where L is a unit lower triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 1 & 1 \\
4 & 4 & 3 \\
8 & 10 & 13
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 6
\end{array}\right]} \\
A
\end{gathered}=L u \text { U } L
$$

Example: Solve the system below using the LU Factorization on the previous page.
Example: Solve the s
$\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & 4 & 3 \\ 8 & 10 & 13\end{array}\right] \vec{x}=\left[\begin{array}{c}1 \\ 2 \\ -8\end{array}\right]$

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& L \underbrace{u \vec{x}}_{\vec{y}}=\vec{b}
\end{aligned}
$$

(1) Solve $L_{\bar{y}}=\vec{b}$ to get \vec{y}
(2) Solve $u_{\vec{x}}=\vec{y}$ to get \vec{x}
(1) $L_{y}=\vec{b}$;

$$
y_{1}=1
$$

$$
2 y_{1}+y_{2}=2 \Rightarrow 2+y_{2}=2 \Rightarrow y_{2}=0
$$

$$
4 y_{1}+3 y_{2}+y_{3}=-8 \Rightarrow x_{x_{1}} x_{2} x_{3}+0+y_{3}=-8 \Rightarrow y_{3}=-12
$$

(2) $u_{\vec{x}}=\vec{y}$:
$\left[\begin{array}{cccc}x_{1} & x_{2} & x_{3} & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 6 & -12\end{array}\right]$

$$
\begin{aligned}
6 x_{3} & =-12 \\
x_{3} & =-2
\end{aligned}
$$

$$
2 x_{2}+x_{3}=0
$$

$\Rightarrow x_{2}=1$

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}=1 \\
& \Rightarrow x_{1}=1
\end{aligned} \quad x=\left[\begin{array}{l}
1 \\
1 \\
-2
\end{array}\right]
$$

