Definition: An **elementary matrix** represents a row operation.

Example: State the row operation that is represented by the elementary matrix. Then find the inverse matrix.

a)
$$E_1 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

represents $3R_1$
 $\frac{1}{3}R_1$ indoes it
 $E_1^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix}$
b) $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
represents $R_1 \longrightarrow R_2$ indoes it
 $E_2^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
c) $E_3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
represents $R_2 + 2R_1$
 $R_2 - 2R_1$ indoes it
 $E_3^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$

Fact: An elementary matrix acts on the left of a matrix. When an elementary matrix is multiplied on the left of A, it performs the associated row operation on A. For example: $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a & 2b \\ c & d \end{bmatrix}.$

Example: Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Write A and A^{-1} as a product of elementary matrices.

$$\frac{R_{1}}{2} \begin{bmatrix} i \\ j \\ 0 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$$

$$\frac{R_{1} - i R_{2}}{R_{1} - i R_{2}} \begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix} =$$

$$E_2 E_1 A = I$$

$$A^{-1}$$

$$A = E_{2}E_{1}$$

$$A = (A^{-1})^{-1}$$

$$= (E_{2}E_{1})^{-1}$$

$$= E_{1}^{-1}E_{2}^{-1}$$

Example: Let $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$. Write A and A^{-1} as a product of elementary matrices.

 $A^{-1} = E_4 E_3 E_2 E_1$ $A = (A^{-1})^{-1}$ = $(\xi_{4}\xi_{3}\xi_{2}\xi_{1})^{-1}$ = $\xi_{1}^{-1}\xi_{2}^{-1}\xi_{3}^{-1}\xi_{4}^{-1}$

The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:

a) A is invertible.

- b) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d) The RREF of A is I.
- e) A is a product of elementary matrices.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given $n \times n$ matrix, the five statements are all true or all false.

Example: Consider the Fundamental Theorem of Invertible Matrices. Which of the five statements are true for A?

a) $A = \begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$ det $A \neq 0$ \Rightarrow A is invertible All fire statements are true for A.

b)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

 $det A = 0$
 $\Rightarrow A$ is not invertible
None of the five statements
 me the five statements

3.4 LU Factorization

Definition: An **upper triangular matrix** is a square matrix with zeros below the main diagonal. An example is $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$.

Definition: A lower triangular matrix is a square matrix with zeros above the main diagonal. An example is $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$.

Definition: A unit lower triangular matrix is lower triangular and has ones on the main diagonal. An example is $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5 & 1 \end{bmatrix}$.

Definition: The LU Factorization of a square matrix A is A = LU, where L is a unit lower triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:

2	1	1		[1	0	0	[2	1	1]
4	4	3	=	2	1	0	0	2	1
8	10	13	=	4	3	1	0	0	6

Example: Solve the system below using the LU Factorization on the previous page.

 $\begin{vmatrix} 4 \\ 8 \end{vmatrix}$ $A_{x} = b$ $U \chi = b$) 1 5t Solve Ly=b bgety Solve Uni = y to get ji y, yz yz $\begin{bmatrix}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 2 \\
4 & 2 & 1 & 0
\end{bmatrix}$ Ly=b; $y_1 = 1$ $2y_1 + y_2 = 2 \implies 2 + y_2 = 2 \implies y_2 = 0$ $4y_{1} + 3y_{2} + y_{3} = -8 \implies 4 + 0 + y_{3} = -8 \implies y_{3} = -12$ $\begin{bmatrix}
2 & 1 & 1 & | & 1 \\
0 & 2 & 1 & | & 0 \\
0 & 0 & 6 & | & -12
\end{bmatrix}$ $U_{X} = Y$