3.3 The Inverse of a Matrix

Definition: An elementary matrix represents a row operation.

To identify which operation, consider how I has been transformed. For example:
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3.3 The Inverse of a Matrix

Example: State the row operation that is represented by the elementary matrix. Then
find the inverse matrix.

on-[}

fesets 30,
=, wdses 3T
Er= 3 9]
ve-p ]

Tpreseds R o= @
(QIG—*> (81_ w\does H}Jf'

_1 0 |
S L
95-[} ]

WPFC!&T}} 021+ Zﬁl
K, - Zle\ U/\Ao@ i}f

99



3.3 The Inverse of a Matrix

Fact: An elementary matrix acts on the left of a matrix. When an elementary matrix is
multiplied on the left of A, it performs the associated row operation on A. For example:

SRR

2 1 . .
} . Write A and A~! as a product of elementary matrices.

Example: Let A = [O 1
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3.3 The Inverse of a Matrix

2 4

Example: Let A = [1 1

} . Write A and A™! as a product of elementary matrices.
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3.3 The Inverse of a Matrix

The Fundamental Theorem of Invertible Matrices

Let A be an n x n matrix. The following statements are equivalent:
a) A is invertible.

b) Ax = b has a unique solution for every b in R".

c) Ax = 0 has only the trivial solution.

d) The RREF of A is I.

e) A is a product of elementary matrices.

Comment: Consider the Fundamental Theorentof Invertible Matrices. For a given n x n
matrix, the five statements areor all false.
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3.3 The Inverse of a Matrix

Example: Consider the Fundamental Theorem of Invertible Matrices. Which of the five
statements are true for A?
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3.4 LU Factorization

3.4 LU Factorization

Definition: An upper triangular matrix is a square matrix with zeros below the main
- 2

diagonal. An example is

S Ot W

0
0 0

Definition: A lower triangular matrix is a square matrix with zeros above the main
— o

diagonal. An example is (|2 3 .
=2 %)
Definition: A unit lower triangular matrix is lower triangular and has ones on the

e

main diagonal. An example is

Definition: The LU Factorization of a square matrix A is A = LU, where L is a unit lower
triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:

2 1 1 1 0012 11
4 4 3| =1(210]1]0 21
8 10 13 4 3 1110 0 6

A=
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3.4 LU Factorization

Example: Solve the system below using the LU Factorization on the previous page.
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