If $A^{-1} A=I$
then A is invertible
and A^{-1} is the $\frac{\text { inverse of } A}{\text { "A inverse"" }}$.

Definition: If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then the determinant of A is $\operatorname{det} A=a d-b c . \quad(S l(f i o \cap 1,4)$
Fact: If A is a 2×2 matrix then:
$A^{-1}=\left\{\begin{array}{cl}\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right], & \text { if } \operatorname{det} A \neq 0 \\ \text { undefined, } & \text { if } \operatorname{det} A=0\end{array}\right.$

Example: Find A^{-1} :
a) $A=\left[\begin{array}{cc}1 & -4 \\ 7 & 2\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det} A=1(2)-(-4)(7)=30 \\
& A^{-1}=\frac{1}{30}\left[\begin{array}{cc}
2 & 4 \\
-7 & 1
\end{array}\right]
\end{aligned}
$$

b) $A=\left[\begin{array}{cc}3 & -2 \\ -9 & 6\end{array}\right]$
$\operatorname{det} A=18-18=0$
A^{-1} does not exist
(A is not invertible)

Fact: If A^{-1} exists then the system of equations $A \vec{x}=\vec{b}$ has a unique solution: $\vec{x}=A^{-1} \vec{b}$.
Example: Let's explore why the above fact is true.

$$
\text { system of equations } \begin{aligned}
& A \vec{x}=\vec{b} \\
& \underbrace{A^{-1} A \vec{x}}_{I \vec{x}}=A^{-1} \vec{b} \\
& \vec{x}=A^{-1} \vec{b} \\
& A^{-1} \vec{b}
\end{aligned}
$$

Example: Use A^{-1} to solve:

$$
\left.\begin{array}{rl}
4 x-5 y & =-6 \\
-5 x+6 y & =7 \\
-5 & 6
\end{array}\right]\left[\begin{array}{cc}
4 \\
y
\end{array}\right]=\left[\begin{array}{c}
-5 \\
7
\end{array}\right]
$$

$$
\operatorname{det} A=-1
$$

$$
\begin{aligned}
A^{-1} & =\frac{1}{-1}\left[\begin{array}{ll}
6 & 5 \\
5 & 4
\end{array}\right] \\
& =-\left[\begin{array}{ll}
6 & 5 \\
5 & 4
\end{array}\right]
\end{aligned}
$$

$$
\vec{x}=A^{-1} \stackrel{\rightharpoonup}{b}
$$

$$
=-\left[\begin{array}{cc}
6 & 5 \\
5 & 4
\end{array}\right]\left[\begin{array}{c}
-6 \\
7
\end{array}\right]
$$

Fact: To find A^{-1} for an $n \times n$ matrix we form the augmented matrix $[A \mid I]$. We perform row operations to produce I on the left side. The resulting matrix on the right side will be A^{-1}.

$$
\begin{aligned}
& \text { Example: Find } A^{-1} \text { for } A=\left[\begin{array}{lll}
2 & 5 & 1 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right] \text {. } \\
& \text { [AlI] } \\
& {\left[\begin{array}{lll|lll}
2 & 5 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1} \leftrightarrow R_{2} \\
& {\left[\begin{array}{lll|lll}
1 & 2 & 2 & 0 & 1 & 0 \\
2 & 5 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& \begin{array}{l}
R_{2}-2 R_{1} \\
R_{3}-2 R_{1}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & -3 & 1 & -2 & 0 \\
0 & -2 & -2 & 0 & -2 & 1
\end{array}\right] \\
& R_{1}-2 R_{2} \\
& R_{3}+2 R_{2} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 8 & -2 & 5 & 0 \\
0 & 1 & -3 & 1 & -2 & 0 \\
0 & 0 & -8 & 2 & -6 & 1
\end{array}\right]} \\
& R_{1}-8 R_{3} \\
& R_{2}+3 R_{3} \\
& \underbrace{1}_{I} \begin{array}{ccc|ccc}
1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & \frac{2}{8} & \frac{2}{8} & \frac{-3}{8} \\
\frac{-2}{8} & \frac{6}{8} & \frac{-1}{8}
\end{array}]
\end{aligned}
$$

Comment: By transforming A into I we are "undoing" A. The matrix on the right side will be the matrix that "undoes" A, that is A^{-1}.

Example: Find A^{-1} for $A=\left[\begin{array}{ccc}1 & 1 & 5 \\ 1 & 2 & 6 \\ 2 & 3 & 11\end{array}\right]$.

$$
\begin{aligned}
& \text { [AlI] } \\
& {\left[\begin{array}{ccc|ccc}
1 & 1 & 5 & 1 & 0 & 0 \\
1 & 2 & 6 & 0 & 1 & 0 \\
2 & 3 & 11 & 0 & 0 & 1
\end{array}\right]} \\
& R_{2}-R_{1}\left[\begin{array}{l:l:|ccc}
1 & 1 & 5 & 1 & 0 \\
0 & 1 & 1 & 0 \\
R_{3}-2 R_{1} & 1 & 1 & 0 \\
0 & 1 & & & -2
\end{array}\right) \\
& R_{1}-R_{2} \\
& R_{3}-R_{2} 0000 \\
& \text { Cannot make I on the left } \\
& \Rightarrow A^{-1} \text { does not exist. }
\end{aligned}
$$

Fact: Suppose a zero row appears on the left side while reducing $[A \mid I]$. Then A^{-1} does not exist.

We'll look at three properties of A^{-1}.
Property 1: If A^{-1} exists then $\left(A^{-1}\right)^{-1}=A$.
Property 2: $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ for any matrix A.
Example: Verify Property 2 for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$.

$$
\begin{aligned}
& \left(A^{\top}\right)^{-1}=\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]^{-1}=\frac{1}{1}\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right] \\
& \left(A^{-1}\right)^{\top}=\left(\frac{1}{1}\left[\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right]\right)^{\top}=\left[\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right]^{\top}=\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Property 3: For any matrices $A_{1}, A_{2}, \ldots, A_{n}$ with compatible sizes: $\left(A_{1} A_{2} \cdots A_{n}\right)^{-1}=A_{n}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$.

Comment: In particular this means that $(A B)^{-1}=B^{-1} A^{-1}$.
Comment: Let Operation A represent putting on your socks. Let Operation B represent putting on your shoes. To reverse this sequence we have to undo the operations and reverse the order of operations. We could express this in matrix terms as $(A B)^{-1}=B^{-1} A^{-1}$.

Comment: Consider Property 3 with all n matrices equal to A. The statement becomes $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$. This means we can write A^{-n} without confusion.

Example: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Find A^{-2}.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{ll}
7 & 10 \\
4 & 22
\end{array}\right] \\
& \left(A^{2}\right)^{-1}=\frac{1}{4}\left[\begin{array}{cc}
22 & -10 \\
-15 & 7
\end{array}\right]
\end{aligned}
$$

Example: Let A, B and X all be invertible $n \times n$ matrices. Solve for X given $(A X)^{-1}=B A$.

$$
\begin{aligned}
& \text { Left } \\
& \text { multiply by } A^{-1}
\end{aligned}
$$

$$
\alpha
$$

or

$$
\begin{aligned}
& (A X)^{-1}=B A \\
& \left((A X)^{-1}\right)^{-1}=(B A)^{-1} \\
& A X=(B A)^{-1} \\
& \underbrace{}_{I^{-1} A X}=A^{-1}(B A)^{-1} \\
& X=A^{-1}(B A)^{-1} \\
& X=A^{-1} A^{-1} B^{-1} \\
& X=A^{-2} B^{-1}
\end{aligned}
$$

Definition: An elementary matrix represents a row operation.
To identify which operation, consider how I has been transformed. For example:
$E=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] \underset{\sim}{\text { represents } 2 R_{1}} \quad I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$E=\left[\begin{array}{cc}1 & 0 \\ 0 & -4\end{array}\right]$ represents $-4 R_{2}$
$E=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ represents $R_{2}+3 R_{1}$
$E=\left[\begin{array}{cc}1 & -5 \\ 0 & 1\end{array}\right]$ represents $R_{1}-5 R_{2}$
$E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ represents $R_{1} \leftrightarrow R_{2}$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ represents $R_{2} \leftrightarrow R_{3}$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right]$ represents $R_{2}+6 R_{3}$

