3.2 Matrix Algebra
Example: Is
$$\begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 0 & 1 \\ 6 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 7 & 2 \end{bmatrix}$?
Let $C_1 \begin{bmatrix} 0 & 1 \\ 6 & 2 \end{bmatrix} + C_2 \begin{bmatrix} 0 & 1 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix}$
 $\begin{pmatrix} 0 & 1 \\ 6 & 2 \end{bmatrix} + C_2 \begin{bmatrix} 0 & 1 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix}$
 $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix}$
 $\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$
 $Rearder rows \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}$
 $R_{2}-6R_1 \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$
 $R_{2}-2R_1 \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$
 REF
Solvable system
 $=$ Yes

Check:
$$R_1 - R_2 \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -2 \\ 0 & 0 & | & 0 \end{bmatrix} = \begin{bmatrix} 0 & | & -2 \\ 0 & 0 & | & 0 \end{bmatrix} RREF$$

 $3 \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 &$

.

5

Comment: The general form of the span allows us to quickly identify which matrices are in the span. For example, $\begin{bmatrix} 1 & 7 \\ 2 & 30 \end{bmatrix}$ is in the span and $\begin{bmatrix} 1 & 7 \\ 3 & 30 \end{bmatrix}$ is not.

Example: Find the general form of span $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$).

$$C_{1}\begin{bmatrix} 2 & 0 \end{bmatrix} + C_{2}\begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & x \\ y & 2 \end{bmatrix}$$

Get Conditions on W, X_{1}, y, z .

$$\begin{bmatrix} 0 & 2 & 1 \\ 2 & 4 & 1$$

Example: Are $\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$ linearly independent?
С, [.	$ \begin{array}{c} 1 & 0 \\ 2 & 0 \end{array} + C_{1} \left[\begin{array}{c} 3 & 0 \\ 6 & 1 \end{array} \right] + C_{3} \left[\begin{array}{c} 2 & 1 \\ 4 & 5 \end{array} \right] = \left[\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right] $ $ \begin{array}{c} C_{1} = 0 \\ C_{3} = 0 \end{array} $ $ \begin{array}{c} infinitely - many \\ solutions \end{array} $ $ \begin{array}{c} C_{1} > (2, C_{3}) \end{array} $
Ч	és No
R3-2 Reorde bows	$\begin{array}{c} C_{1} & C_{2} & C_{3} \\ 1 & 3 & 2 & & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & 1 & 5 & & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & 0 & 0 & &$