3.2 Matrix Algebra

Example: Is $\left[\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right]$ a linear combination of $\left[\begin{array}{ll}0 & 1 \\ 6 & 2\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 7 & 2\end{array}\right]$?
Let $C_{1}\left[\begin{array}{ll}0 & 1 \\ 6 & 2\end{array}\right]+C_{2}\left[\begin{array}{ll}0 & 1 \\ 7 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right]$

$$
\begin{aligned}
& 0 c_{1}+0 c_{2}=0 \\
& 1 c_{1}+1 c_{2}=1 \\
& 6 c_{1}+7 c_{2}=4 \\
& \ldots \\
& c_{1} \\
& c_{2} \\
& {\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & 7 & 4 \\
2 & 2 & 2
\end{array}\right]}
\end{aligned}
$$

Reorder rows $\left[\begin{array}{ll|l}1 & 1 & 1 \\ 6 & 7 & 4 \\ 2 & 2 & 2 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& R_{2}-6 R_{1} \\
& R_{3}-2 R_{1}
\end{aligned}\left[\begin{array}{cc|c}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { REF }
$$

Solvable system

$$
\Rightarrow \quad Y e s
$$

$$
\begin{aligned}
& \text { Check: } R_{1}-R_{2}\left[\begin{array}{cc|c}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { RREF } \quad \begin{array}{l}
C_{1}=3 \\
C_{2}=-2 \\
3\left[\begin{array}{cc}
0 & 1 \\
6 & 2
\end{array}\right]-2\left[\begin{array}{cc}
0 & 1 \\
7 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
4 & 2
\end{array}\right] 83
\end{array}, .
\end{aligned}
$$

Example: Find the general form of $\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right]\right)$.
set of linear
Gmbinations

$$
C_{1}\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]+C_{2}\left[\begin{array}{ll}
3 & 0 \\
6 & 1
\end{array}\right]+C_{3}\left[\begin{array}{ll}
2 & 1 \\
4 & 5
\end{array}\right]=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]
$$

Goal: Find conditions on w, x, y, z Each zero now of REF will give
a condition.

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc|c}
C_{1} & C_{2} & C_{3} & w \\
1 & 3 & 2 & w \\
0 & 0 & 1 & x \\
0 & 6 & 4 & y \\
0 & 1 & 5 & z
\end{array}\right]} \\
R_{3}-2 R_{1}\left[\begin{array}{lll|l}
1 & 3 & 2 & w \\
0 & 0 & 1 & x \\
0 & 0 & 0 & y-2 w \\
0 & 1 & 5 & z
\end{array}\right] \\
R \text { Reader } \\
\text { rows }
\end{array} \begin{array}{lll|l}
1 & 3 & 2 & w \\
0 & 1 & s & z \\
0 & 0 & 1 & x \\
0 & 0 & 0 & y-2 w
\end{array}\right] R \in F-1 .
$$

Solvable system $\Rightarrow \begin{aligned} & y-2 w=0 \\ & y=2 w\end{aligned}$ $\left\{\left[\begin{array}{ll}w & x \\ y & z\end{array}\right] \operatorname{such} \text { that } y=2 w\right\}_{84}$ OR $\left\{\begin{array}{l}y=2 w \\ \left.\left[\begin{array}{ll}w & x\end{array}\right]\right\}\end{array}\right.$

Comment: The general form of the span allows us to quickly identify which matrices are in the span. For example, $\left[\begin{array}{cc}1 & 7 \\ 2 & 30\end{array}\right]$ is in the span and $\left[\begin{array}{cc}1 & 7 \\ 3 & 30\end{array}\right]$ is not.

Example: Find the general form of $\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right]\right.$.

$$
\begin{aligned}
& c_{1}\left[\begin{array}{cc}
1 & 0 \\
2 & 0
\end{array}\right]+c_{2}\left[\begin{array}{cc}
z & 1 \\
\text { Get Conditions on } & 1
\end{array}\right]=\left[\begin{array}{cc}
w & x \\
y & z \\
y & z
\end{array}\right] \\
& \left.\begin{array}{ll|l}
C_{1} & C_{2} & \\
1 & 2 & w \\
0 & 1 & x \\
2 & 4 & y \\
0 & 5 & z
\end{array}\right] \\
& R_{3}-2 R_{1}\left[\begin{array}{cc|c}
1 & 2 & w \\
0 & 1 & x \\
0 & 0 & y-2 w \\
0 & 5 & z
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solvable system } \\
& \Rightarrow \begin{array}{c}
y-2 w=0 \\
y=2 w
\end{array} \text { and } \begin{array}{c}
z-5 x=0 \\
z=5 x
\end{array} \\
& \left\{\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] \text { such that } y=2 w \text { and } z=S x\right\} \\
& \left.\operatorname{OR}\left\{\begin{array}{cc}
\omega & x \\
2 \omega & 5 x
\end{array}\right]\right\} \\
& \text { FollowUp: }\left[\begin{array}{ll}
1 & 2 \\
2 & 10
\end{array}\right] \text { is in the span } \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { is not in the span }}
\end{aligned}
$$

Example: Are $\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right]$ linearly independent?

$$
\begin{gathered}
c_{1}\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
3 & 0 \\
6 & 1
\end{array}\right]+c_{3}\left[\begin{array}{ll}
2 & 1 \\
4 & 5
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
c_{2}=0 \\
c_{3}=0 \\
\text { Yes } & 0
\end{array}\right] \\
\text { infinitely -mary } \\
\text { Solutions } c_{12} c_{2}, c_{3}
\end{gathered}
$$

$$
\begin{aligned}
& c_{1} c_{2} \\
& c_{3} \\
& {\left[\begin{array}{llll}
1 & 3 & 0 \\
0 & 0 & 1 & 0 \\
2 & 6 & 4 & 0 \\
0 & 1 & 5 & 0
\end{array}\right]}
\end{aligned}
$$

Reorder
now $\left[\begin{array}{ccc|c}0 & c_{2} & c_{3} & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
1 solution

$$
\left(C_{1}=C_{2}=C_{3}=0\right)
$$

YES

