Example: Balance $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{wNH}_{3}+x \mathrm{O}_{2} \rightarrow y \mathrm{~N}_{2}+z \mathrm{H}_{2} \mathrm{O}$
w, x, y, z are the variables

N:

$$
\text { H: } \quad 3 w=2 z
$$

$$
\begin{array}{rlrr}
w=2 y & \Rightarrow & w & -2 y \\
3 w=2 z & \Rightarrow & 3 w & -2 z
\end{array}=0
$$

$0:$

$$
\left[\begin{array}{cccc|c}
(1) & 0 & 0 & -\frac{2}{3} & 0 \\
0 & 1 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 1 & -\frac{1}{3} & 0
\end{array}\right]
$$

$$
z=t
$$

$$
\begin{array}{lll}
w-\frac{2}{3} z=0 & \Rightarrow & w=\frac{2}{3} t \\
x-\frac{1}{2} z=0 & \Rightarrow & x=\frac{1}{2} t \\
y-\frac{1}{3} z=0 & \Rightarrow & y=\frac{1}{3} t
\end{array}
$$

Choose smallest positive integer

$$
\text { solution: } t=6
$$

$$
[\omega, x, y, t]=[4,3,2,6]
$$

${ }^{71} 4 \mathrm{NH}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Example: Consider the following network of one-way streets. The average number of vehicles per hour through intersections A,B,C,D was collected from historical data.
a) Find the flows w, x, y, z.
b) If the solution has a parameter then specify the possible values of the parameter.

Inflow = outflow at each intersection

$$
\begin{aligned}
& A: 1 S+15=\omega+x \quad \Rightarrow \quad \omega+x=30 \\
& B: \omega+y=25+10 \quad \Rightarrow \quad w+y=35 \\
& \begin{array}{llll}
C: 20+20=y+z & \Rightarrow & y+z=40 \\
D: x+z=15+20 & & \Rightarrow & x+z=35
\end{array} \\
& {\left[\begin{array}{llll}
w & x & y & z \\
1 & 1 & 0 & 0 \\
30 \\
1 & 0 & 1 & 0 \\
0 & 35 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array} 35\right]} \\
& {\left[\begin{array}{cccc|c}
1 & 0 & 0 & -1 & -5 \\
0 & 1 & 0 & 1 & 35 \\
0 & 0 & 1 & 1 & 40 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \begin{array}{lll}
w-z=-5 \quad \Rightarrow \quad w=-s+t \quad & (t \geqslant 5) \\
x+z=35 \quad \Rightarrow \quad & x=35-t \quad(t \leq 35)
\end{array} \\
& (t \geq 0) \\
& x+z=35 \Rightarrow \quad x=35-t \quad(t \leq 35) \\
& y+z=40 \Rightarrow y=40-t \quad(t \leq 40) \\
& (5 \leq t \leq 35) \quad\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-5 \\
35 \\
40 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Example: Find all possible combinations of 15 coins (nickels, dimes or quarters) that total \$ 2.50.

Let $x=\#$ of nickels

$$
\begin{aligned}
& y=" \text { dimes } \\
& z=\text { quarters }
\end{aligned}
$$

$$
x+y+z=15
$$

$$
\begin{aligned}
& 5 x+10 y+25 z=250 \\
& {\left[\left.\begin{array}{ccc}
x & y & z \\
1 & 1 & 1 \\
5 & 15 \\
5 & 10 & 25
\end{array} \right\rvert\, 250\right]} \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & -3 & -20 \\
0 & 1 & 4 & 35
\end{array}\right] \\
& (t \geqslant 0) \\
& x-3 z=-20 \Rightarrow x=-20+3 t \\
& (t \geqslant 7) \\
& y+4 z=35 \quad \Rightarrow \quad y=3 s-4 t \\
& (t \leq 8)
\end{aligned}
$$

Need non-negative integer solutions:

$$
t=7 \quad \text { or } \quad t=8
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
7 \\
7
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]
$$

Chapter 3: Matrices

3.1 Matrix Operations

Definition: The size of a matrix is given by (\# of rows) \times ($\#$ of columns).
For example $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is a 2×3 matrix.

Definition: The entry of a matrix A is written $a_{i j}$ or $[A]_{i j}$, where i and j are the row index and the column index respectively. For the matrix above $a_{23}=6$ or $[A]_{23}=6$.

Definition: A square matrix has size $n \times n$.

Definition: An identity matrix is square with ones along the main diagonal and zeros elsewhere. It can be written I, or I_{n} if we want to emphasize its size.
For example $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Definition: A diagonal matrix is square and all the entries off the main diagonal are zero.
For example $D=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ or $D=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$.
Example: Let $A=\left[\begin{array}{ccc}1 & 6 & 1 \\ -2 & -2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & -3 \\ 1 & 6 & 9\end{array}\right]$. Find:
a) $A+B$

$$
=\left[\begin{array}{ccc}
2 & 6 & -2 \\
-1 & 4 & 13
\end{array}\right]
$$

b) $3 A$

$$
=\left[\begin{array}{ccc}
3 & 18 & 3 \\
-6 & -6 & 12
\end{array}\right]
$$

Comment: $A+B$ is undefined if A and B have different sizes.
Definition: The process of multiplying a matrix by a real number is called scalar multiplication.

Example: Let $A=\left[\begin{array}{ccc}1 & 6 & 1 \\ -2 & -2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & -3 \\ 1 & 6 & 9\end{array}\right]$. Find $A-3 B$.

$$
\begin{aligned}
A-3 B & =A+(-3 B) \\
& =\left[\begin{array}{ccc}
1 & 6 & 1 \\
-2 & -2 & 4
\end{array}\right]+\left[\begin{array}{ccc}
-3 & 0 & 9 \\
-3 & -18 & -27
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2 & 6 & 10 \\
-5 & -20 & -23
\end{array}\right]
\end{aligned}
$$

Definition: The transpose of A, written A^{T}, interchanges the rows and columns of A. The matrix A is symmetric if $A^{T}=A$.

Example: Calculate the transpose and state if the matrix is symmetric.

a) $A=\frac{$\begin{tabular}{|cc|}
1 \& 1

\hline

$|}{$

1 \& 6

\hline \& 3
\end{tabular}$|}$

$$
A \text { is symmetric. }
$$

b) $B=$\begin{tabular}{lll}

1	2	17
	6	1

\hline
\end{tabular}

$$
B \text { is not symmetric. }
$$

