Example: Balance $NH_3 + O_2 \rightarrow N_2 + H_2O$

$$W NH_3 + XO_2 \rightarrow y N_2 + ZH_2O$$

 W, X, Y, Z are the variables

N:
$$W = 2y = 0$$
 $W - 2y = 0$
H: $3W = 2z = 0$ $3W - 2z = 0$

$$0: 2x = 2 =) 2x - 2 = 0$$

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & &$$

Example: Consider the following network of one-way streets. The average number of vehicles per hour through intersections A,B,C,D was collected from historical data. a) Find the flows w, x, y, z.

b) If the solution has a parameter then specify the possible values of the parameter.

Inflow = outflow at each intersection

Example: Find all possible combinations of 15 coins (nickels, dimes or quarters) that total \$ 2.50.

Chapter 3: Matrices

3.1 Matrix Operations

Definition: The **size** of a matrix is given by $(\# \text{ of rows}) \times (\# \text{ of columns})$. For example $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is a 2 × 3 matrix.

Definition: The entry of a matrix A is written a_{ij} or $[A]_{ij}$, where i and j are the row index and the column index respectively. For the matrix above $a_{23} = 6$ or $[A]_{23} = 6$.

Definition: A square matrix has size $n \times n$.

Definition: An **identity** matrix is square with ones along the main diagonal and zeros elsewhere. It can be written I, or I_n if we want to emphasize its size.

For example $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Definition: A **diagonal** matrix is square and all the entries off the main diagonal are zero. For example $D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ or $D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.

Example: Let $A = \begin{bmatrix} 1 & 6 & 1 \\ -2 & -2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 6 & 9 \end{bmatrix}$. Find: a) A + B= $\begin{bmatrix} 2 & 6 & -2 \\ -1 & 4 & 13 \end{bmatrix}$

b) 3A

$$= \begin{bmatrix} 3 & 18 & 3 \\ -6 & -6 & 12 \end{bmatrix}$$

Comment: A + B is undefined if A and B have different sizes.

Definition: The process of multiplying a matrix by a real number is called **scalar multiplication**.

Example: Let
$$A = \begin{bmatrix} 1 & 6 & 1 \\ -2 & -2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 6 & 9 \end{bmatrix}$. Find $A - 3B$.

$$A - 3B = A + (-3B)$$

$$= \begin{bmatrix} 1 & 6 & 1 \\ -2 & -2 & 4 \end{bmatrix} + \begin{bmatrix} -3 & 0 & 9 \\ -3 & -[8 & -27] \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 6 & 10 \\ -5 & -70 & -23 \end{bmatrix}$$

Definition: The **transpose** of A, written A^T , interchanges the rows and columns of A. The matrix A is **symmetric** if $A^T = A$.

Example: Calculate the transpose and state if the matrix is symmetric.

a)
$$A = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 6 & 3 \\ 4 & 3 & -1 \end{bmatrix}$$

 $A = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 6 & 3 \\ 4 & 3 & -1 \end{bmatrix}$
b) $B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 6 & 1 \end{bmatrix}$
 $B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 6 & 1 \end{bmatrix}$
 $B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 6 & 1 \end{bmatrix}$

A is symmetric.

B is not symmetric.