Example: Are $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ linearly independent?
Let $C_{1}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+C_{2}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+C_{3}\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
C_{1} & C_{2} & C_{3} & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 2 & 0
\end{array}\right]} \\
& R_{2}-R_{1} \\
& \frac{R_{2}}{-1}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \\
& R_{1}-R_{2} \\
& R_{3}+R_{2}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 2 & 0
\end{array}\right]
$$

Yes. Vectors are linearly independent.

Fact: A set of more than n vectors in \mathbb{R}^{n} is linearly dependent. For example three vectors in \mathbb{R}^{2} are guaranteed to be linearly dependent.

Example: Let's explore why this fact is true.
Let $C_{1} \bar{v}_{1}+C_{2} \stackrel{\rightharpoonup}{v}_{2}+\ldots+C_{m} \vec{v}_{m}=\overrightarrow{0}$

System is solvable because $c_{1}=c_{2}=\cdots=c_{m}=0$ solves the system.

$$
\left[\begin{array}{lllll|c}
1 & & & & & 0 \\
& 1 & & & & \\
0 \\
& & 1 & & & \\
\vdots \\
& & & \ddots & 1 & \\
& & & & & \\
0
\end{array}\right]_{R R \in F}
$$

Solution hus at least I parameter.
\Rightarrow There are infinitely -many solutions

$$
C_{1}, C_{2}, \ldots, C_{n}
$$

\Rightarrow The vectors are linearly dependent.

Example: Find a linear dependence relationship (linear dependency) involving $\left[\begin{array}{l}1 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 30\end{array}\right]$. Start by letting $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$.

$$
\left.\left.\begin{array}{c}
C_{1} \overrightarrow{v_{1}}+C_{2} \overline{v_{2}}+C_{3} \overrightarrow{v_{3}}=0 \\
C_{1} \\
C_{2}
\end{array} C_{3} \right\rvert\, \begin{array}{cc}
1 & 2 \\
4 & 0 \\
6 & 6 \\
30 & 0
\end{array}\right] .
$$

Let t be any nonzero real $\#: \quad t=1$

$$
\begin{aligned}
& C_{1}=-6, \quad C_{2}=1, \quad C_{3}=1 \\
& C_{1} \vec{v}_{1}+C_{2} \stackrel{\rightharpoonup}{v}_{2}+C_{3} \vec{v}_{3}=\overrightarrow{0} \\
& -6 \vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

Example: Find a linear dependence relationship (linear dependency) involving $\left[\begin{array}{l}1 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 30\end{array}\right]$. Start by putting the vectors into the rows of a matrix.

$$
\begin{gathered}
\vec{v}_{1}\left[\begin{array}{cc}
1 & 6 \\
\vec{v}_{2} & 6 \\
\vec{v}_{3} & 30
\end{array}\right] \\
\vec{v}_{1}\left[\begin{array}{cc}
1 & 6 \\
0 & -6 \\
\vec{v}_{2}-2 \vec{v}_{1} \\
\vec{v}_{3}-4 \vec{v}_{1} & 6
\end{array}\right] \\
\left(\vec{v}_{3}-4 \vec{v}_{1}\right)+\left(\vec{v}_{2}-2 \vec{v}_{1}\right)\left[\begin{array}{cc}
0 & 0
\end{array}\right] \\
\text { Any zero row gives a dependency. } \\
\vec{v}_{3}-4 \vec{v}_{1}+\vec{v}_{2}-2 \vec{v}_{1}=0 \\
-6 \vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0}
\end{gathered}
$$

Comment: Compare the methods used in the last two examples. The first method gives the general solution, while the second method gives one particular solution.

Comment: Preview of Section 3.5:
We'll consider objects like lines or planes through the origin, and find a set of direction vectors containing the minimum number of vectors. This discussion will require knowledge of span and linear independence.
2.4 Applications of Linear Systems

Example: Find the parabola $y=a x^{2}+b x+c$ that passes through $(1,12),(-1,18)$ and $(2,30)$.

$$
a x^{2}+b x+c=y
$$

a, b, c are the variables

$$
\begin{array}{rll}
(x, y)=(1,12): & a+b+c=12 \\
(-1,18): & a-b+c=18 \\
(2,30): & 4 a+2 b+c=30 \\
a & b & c \\
& {\left[\begin{array}{cc|c}
1 & 1 & 1 \\
1 & -1 & 1 \\
4 & 2 & 18 \\
4 & & 18
\end{array}\right]} \\
\sim & {\left[\begin{array}{ccc|c}
1 & 0 & c & 7 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 8
\end{array}\right]} \\
a=7, b=-3, c=8 \\
y=a x^{2}+b x+c \\
& y=7 x^{2}-3 x+8
\end{array}
$$

Example: Balance $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
w \mathrm{NH}_{3}+x \mathrm{O}_{2} \rightarrow y N_{2}+z H_{2} \mathrm{O}
$$

ω, x, y, z are the variables

$$
\begin{array}{rllll}
N: & w & =2 y & \Rightarrow & w
\end{array}-2 y=0
$$

To Be Continued

