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2.3 Span and Linear Independence

1 1
Example: Is @ = [1] a linear combination of 4 = [O] and v = [ /
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2.3 Span and Linear Independence

Fact: The vector b is a linear combination of the columns of matrix A if and only if
the system [A] 5] is consistent.

—

Definition: The span of w1, s, ..., u, is the set of all linear combinations of w7y, us, . . ., U,.

Comment: a) span(@,b)= {0, 3@, — 7b, 2d+ 5b,...}

b) span(iy, s, . . ., U,)= {c1U + cotiy + - -+ + cptly }
where ¢y, ¢y, ..., c, are any real numbers.
Fact: The zero vector 0 is in span(uy, Us, . . . , i, ) because 0u; + 0ty + - - - + 0w, = 0.
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2.3 Span and Linear Independence

Example: Describe each span geometrically:
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2.3 Span and Linear Independence
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Example: Find an equation for span( [ ] ). Give your answer in any form.
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2.3 Span and Linear Independence

Example: a) Show that span( B] {2
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b) Write [ﬂ as a linear combination of [;
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2.3 Span and Linear Independence

Comment: To decide if a system is consistent, reduce it to REF.
To solve a system, reduce it to RREF.

Definition: Given {¥}, ¥y, ..., ¥,}, consider solutions to ¢;0; + cotio + .. . + ¢, 0, = 0. If the
only solution is ¢; = ¢ = ... = ¢, = 0 then the set of vectors is linearly independent.
If there are solutions other than ¢; = ¢; = ... = ¢, = 0 then the set of vectors is linearly
dependent.
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Comment: The two sentences below mean the same thing:
Vectors vy, U, . . ., U, are linearly independent.
The set {¥}, s, ..., 9,} is linearly independent.

Comment: The two sentences below mean the same thing:
Vectors v7, U, . .., U, are linearly dependent.
The set {¥, Vs, ...,7,} is linearly dependent.
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2.3 Span and Linear Independence

Comment: a) {[ﬂ , [Z] , ﬁ]} is linearly dependent.
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b) [0] , [1] , [3] are linearly dependent.

o[+ 2 [1) i3] = [o)
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c) {8] and E} are linearly dependent.
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