2.3 Span and Linear Independence

Example: Is $\begin{bmatrix} 8 \\ -10 \end{bmatrix}$ a linear combination of $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$?

Let
$$C_1\left[\frac{1}{2}\right] + C_2\left[\frac{2}{2}\right] = \left[\frac{8}{10}\right]$$

$$\begin{cases}
-C_1 + 2C_2 = 8 \\
2C_1 - 3C_2 = -10
\end{cases}$$

$$\begin{cases}
C_1 & C_2 \\
2 & -3
\end{cases} & -10
\end{cases}$$

$$\begin{cases}
C_1 & C_2 \\
2 & -3
\end{cases} & -10
\end{cases}$$

$$\begin{cases}
C_1 & -2 \\
2 & -3
\end{cases} & -10
\end{cases}$$

$$\begin{cases}
C_1 & -2 \\
2 & -3
\end{cases} & -10
\end{cases}$$

$$\begin{cases}
C_1 & -2 \\
2 & -3
\end{cases} & -10
\end{cases}$$

$$\begin{cases}
C_1 & -2 \\
0 & 1
\end{cases} & 6
\end{cases}$$

$$\begin{cases}
C_2 & C_2
\end{cases}$$

$$\begin{cases}
C_3 & C_2
\end{cases}$$

$$\begin{cases}
C_4 & C_2 = 6
\end{cases}$$
To check: $R_1 + 2R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 & 6 \end{bmatrix}$

$$\begin{cases}
C_1 = 4, C_2 = 6
\end{cases}$$

 $4\begin{bmatrix} -1 \\ 2 \end{bmatrix} + 6\begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 8 \\ -10 \end{bmatrix}$

Example: Is	$\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ a lin	near combin	ation of $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	and $\vec{v} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$?
Let	$C_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	+ (;	$2\left(\begin{array}{c}3\\3\\\end{array}\right) =$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	Combin Combin U	rear nation and	of T	
	C ₁	C ₂ 1 3	1 7 2	
R3 - R1	0	1 3 - 1		
<u>R2</u>	0	 -		
Rz+Rz	0	0	4/3	REF
	<u> </u>	lo sol - No	utin	
- Ju	25/	/		

Fact: The vector \vec{b} is a linear combination of the columns of matrix A if and only if the system $A \mid \vec{b}$ is consistent.

Definition: The span of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ is the set of all linear combinations of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$.

Comment: a) span $(\vec{a}, \vec{b}) = \{\vec{0}, 3\vec{a}, -7\vec{b}, 2\vec{a} + 5\vec{b}, \ldots\}$

b) span $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n) = \{c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_n\vec{u}_n\}$ where c_1, c_2, \dots, c_n are any real numbers.

Fact: The zero vector $\vec{0}$ is in span $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$ because $0\vec{u}_1 + 0\vec{u}_2 + \dots + 0\vec{u}_n = \vec{0}$.

Example: Describe each span geometrically:

a) span(
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ -3 \end{bmatrix}$)
$$= \left\{ \begin{array}{c} C_1 \left[\frac{1}{3} \right] + C_2 \left[\frac{-3}{3} \right] \right\}$$

$$= \left\{ \begin{array}{c} E_1 \left[\frac{1}{3} \right] \\ E_2 \left[\frac{1}{3} \right] \\ E_3 \left[\frac{1}{3} \right] \\ E_4 \left[\frac{1}{3} \right] \\ E_4 \left[\frac{1}{3} \right] \\ E_6 \left[\frac{1}{3} \right] \\ E_7 \left[\frac{1}{3} \right] \\ E_8 \left[\frac{1}{3} \right] \\ E_8$$

b) span(
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$)

All of \mathbb{R}^2 (the xy -plane)

c) span(
$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} -4 \\ 0 \\ 4 \end{bmatrix}$)
$$= \left(\begin{array}{c} C_1 \left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right] + \left(\begin{array}{c} 2 \left[\begin{array}{c} -4 \\ 4 \end{array} \right] \right) \right)$$

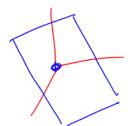
$$= \left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \left(\begin{array}{c} 2 \\ 3 \\ 0 \end{array} \right)$$

$$= \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left[\begin{array}{c} 2 \\ 3 \\ 0 \end{array} \right)$$
d) span($\begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$)

Plane though the origin in
$$\mathbb{R}^3$$
 with direction vectors $T_{r} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ and $T_{r} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example: Find an equation for span($\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$). Give your answer in any form.

Plane through origin



NoRMAL FORM
$$\overline{N} = \overline{U} \times \overline{V}$$

$$= [-3, -5, 3]$$

$$13613$$

$$\vec{h} \cdot \vec{\chi} = \vec{h} \cdot \vec{p}$$

$$\begin{bmatrix} -3 \\ -5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

VECTOR FORM
$$\vec{\lambda} = \vec{p} + s\vec{u} + t\vec{r}$$

$$\vec{\chi} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Example: a) Show that span(
$$\begin{bmatrix} 1\\3 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1 \end{bmatrix}$)= \mathbb{R}^2 . (a) gebra)

Let $C_1 \begin{bmatrix} 1\\3 \end{bmatrix} + C_2 \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} a\\b \end{bmatrix}$

Show the system is Solvable for C_1 and C_2 .

 $\begin{bmatrix} 1\\2\\3\\1 \end{bmatrix} = \begin{bmatrix} a\\b \end{bmatrix}$

Represented the system of the system

System is solvable for c, and cz.

b) Write $\begin{bmatrix} a \\ b \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Comment: To decide if a system is consistent, reduce it to REF. To solve a system, reduce it to RREF.

Definition: Given $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, consider solutions to $c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n = \vec{0}$. If the only solution is $c_1 = c_2 = \dots = c_n = 0$ then the set of vectors is **linearly independent**. If there are solutions other than $c_1 = c_2 = \dots = c_n = 0$ then the set of vectors is **linearly dependent**.

Let $(i\vec{v}_1 + (2\vec{v}_2 + ... + (n\vec{v}_n = 0))$ $C_1 = C_2 = ... = C_n = 0$ is the only and other solutions Vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ ore linearly dependent.

Comment: The two sentences below mean the same thing: Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent. The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly independent.

Comment: The two sentences below mean the same thing: Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly dependent. The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly dependent.

Comment: a) $\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 2\\7 \end{bmatrix} \right\}$ is linearly dependent.

$$3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

b) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ are linearly dependent.

$$O[0] + 3[1] - 1[3] = [0]$$
Gefficients are not all zero.

c) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ are linearly dependent.