2.3 Span and Linear Independence

Example: Is $\left[\begin{array}{c}8 \\ -10\end{array}\right]$ a linear combination of $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -3\end{array}\right]$?

Let

$$
\begin{aligned}
& c_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
8 \\
-10
\end{array}\right] \\
& \left\{\begin{aligned}
-c_{1}+2 c_{2} & =8 \\
2 c_{1}-3 c_{2} & =-10
\end{aligned}\right. \\
& {\left[\binom{c_{1}}{2}\binom{c_{2}}{-3}\left(\begin{array}{c}
8 \\
-10
\end{array}\right]\right.} \\
& \frac{R_{1}}{-1}\left[\begin{array}{ll|l}
1 & -2 & -8 \\
2 & -3 & -10
\end{array}\right] \\
& R_{2}-2 R_{1}\left[\begin{array}{cc|c}
1 & -2 & -8 \\
0 & 1 & 6
\end{array}\right]
\end{aligned}
$$

System is consistent. Yes
To check: $R_{1}+2 R_{2}\left[\begin{array}{ll|l}c_{1} & c_{2} & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 6\end{array}\right]_{\text {RREF }}$

$$
\begin{aligned}
& c_{1}=4, \quad c_{2} \\
&=6 \\
& 4\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+6\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
8 \\
-10
\end{array}\right]
\end{aligned}
$$

Example: Is $\vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$?

Fact: The vector \vec{b} is a linear combination of the columns of matrix A if and only if the system $[A \mid \vec{b}]$ is consistent.

Definition: The span of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ is the set of all linear combinations of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$.

Comment: a) $\operatorname{span}(\vec{a}, \vec{b})=\{\overrightarrow{0}, 3 \vec{a},-7 \vec{b}, 2 \vec{a}+5 \vec{b}, \ldots\}$
b) $\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right)=\left\{c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{n} \vec{u}_{n}\right\}$ where $c_{1}, c_{2}, \ldots, c_{n}$ are any real numbers.

Fact: The zero vector $\overrightarrow{0}$ is in $\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right)$ because $0 \vec{u}_{1}+0 \vec{u}_{2}+\cdots+0 \vec{u}_{n}=\overrightarrow{0}$.

Example: Describe each span geometrically:
a) $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-3 \\ -3\end{array}\right]\right)$

$$
\begin{aligned}
& =\left\{c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
-3 \\
-3
\end{array}\right]\right\} \\
& =\left\{t\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Line through the aigin in \mathbb{R}^{2} with $\vec{d}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
b) $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$

All of \mathbb{R}^{2} (the $x y$-plane)
c) $\operatorname{span}\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 4\end{array}\right]\right)$

$$
=\left\{C_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+C_{2}\left[\begin{array}{c}
-4 \\
0 \\
4
\end{array}\right]\right\}
$$

$$
=\left\{t\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

Line through the origh in \mathbb{R}^{3} with $\hat{d}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
d) $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]\right)$

Place though the origins in \mathbb{R}^{3} with direction vectors $\bar{h}=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$ and $\bar{v}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$

Example: Find an equation for $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]\right.$). Give your answer in any form.

$$
\left\{\begin{array}{l}
\frac{V t(\text { TOR FoRM }}{\vec{x}=\vec{p}+s \vec{u}+t \vec{r}} \\
\vec{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
3 \\
b
\end{array}\right]
\end{array}\right.
$$

$$
\begin{aligned}
& \vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{p} \\
& {\left[\begin{array}{c}
-3 \\
-5 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-5 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Example: a) Show that $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\mathbb{R}^{2} . \quad(a \lg e b \curvearrowright)$
Let $\quad c_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$
Show the system is solvable for c_{1} and c_{2}.

$$
\left[\begin{array}{ll|l}
c_{1} & c_{2} & a \\
1 & 2 & a \\
3 & 1 & b
\end{array}\right]
$$

$$
R_{2}-3 R_{1}\left[\begin{array}{cc|c}
1 & 2 & a \\
0 & -5 & b-3 a
\end{array}\right]_{R \in F}
$$

System is solvable for c_{1} and c_{2}.
b) Write $\left[\begin{array}{l}a \\ b\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

$$
\left.\begin{array}{rl}
\frac{R_{2}}{-5}\left[\begin{array}{cc|c}
1 & 2 & a \\
0 & 1 & \frac{b-3 a}{-5}
\end{array}\right] & =a+\frac{2}{5}(b-3 a) \\
R_{1}-2 R_{2}\left[\begin{array}{cc|c}
1 & 0 & \frac{-a}{5}+\frac{2}{5} \\
0 & 1 & \frac{3 a-}{5}-\frac{b}{5}
\end{array}\right] & =a+\frac{2 b}{5}-\frac{6 a}{5} \\
& =-\frac{a}{5}+\frac{2 b}{5}
\end{array}\right] \begin{aligned}
& R R \in F \\
& C_{1}=\frac{-a}{5}+\frac{2 b}{5} \\
& C_{2}=\frac{3 a}{5}-\frac{b}{5} \\
&\left(-\frac{a}{5}+\frac{2 b}{5}\right)\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left(\frac{3 a}{5}-\frac{b}{5}\right)\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

Comment: To decide if a system is consistent, reduce it to REF.
To solve a system, reduce it to RREF.

Definition: Given $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$, consider solutions to $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}$. If the only solution is $c_{1}=c_{2}=\ldots=c_{n}=0$ then the set of vectors is linearly independent. If there are solutions other than $c_{1}=c_{2}=\ldots=c_{n}=0$ then the set of vectors is linearly dependent.

Comment: The two sentences below mean the same thing:
Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent.
The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly independent.

Comment: The two sentences below mean the same thing:
Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent.
The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly dependent.

Comment: a) $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 7\end{array}\right]\right\}$ is linearly dependent.

$$
3\left[\begin{array}{l}
0 \\
1
\end{array}\right]+1\left[\begin{array}{l}
2 \\
4
\end{array}\right]-1\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
5
$$

b) $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 3\end{array}\right]$ are linearly dependent.

$$
\begin{aligned}
& O\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1
\end{array}\right]-1\left[\begin{array}{l}
3 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { Gefficients are not all zero. }
\end{aligned}
$$

c) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ are linearly dependent.

$$
\begin{aligned}
& 1\left[\begin{array}{l}
0 \\
0
\end{array}\right]+0\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { coeffrients are net all zero }
\end{aligned}
$$

