Comment: Notice that $\vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a solution to the following system:

$$
\begin{array}{r}
x+2 y=0 \\
3 x+4 y=0
\end{array}
$$

Definition: A system whose constants are all zero is called a homogeneous system. The solution $\vec{x}=\overrightarrow{0}$ is called the trivial solution.

Fact: A homogeneous system always has at least one solution: $\vec{x}=\overrightarrow{0}$.
Example: Consider a homogeneous system with more variables than equations. How many solutions does the system have?


At least 1 solution: $\vec{x}=\overrightarrow{0}$


At least I column without a pivot. $\Rightarrow$ Intritely-many solutions.
$2.2 \# 45$
Find the intersection of the two planes:


$$
\left\{\begin{array}{l}
3 x+2 y+z=-1 \\
2 x-y+4 z=5 \\
x \\
x \\
{\left[\begin{array}{ccc|c}
3 & 2 & 1 & -1 \\
2 & -1 & 4 & 5
\end{array}\right]}
\end{array}\right.
$$

$$
\frac{R_{1}}{3}\left[\begin{array}{ccc|c}
1 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
2 & -1 & 4 & 5
\end{array}\right]
$$

$R_{2}-2 R_{1}\left[\begin{array}{ccc|c}1 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ 0 & -\frac{7}{3} & \frac{10}{3} & \frac{17}{3}\end{array}\right]$

$$
-1-\frac{4}{3}
$$

$$
-\frac{3}{7} R_{2} \quad\left[\begin{array}{ccc|c}
1 & \frac{2}{3} & \frac{1}{3} & \frac{-1}{3} \\
0 & 1 & \frac{-10}{7} & \frac{-17}{7}
\end{array}\right]
$$

$$
R_{1}-\frac{2}{3} R_{2}\left[\begin{array}{cccc}
x & y & z & \frac{9}{7} \\
0 & \frac{9}{7} \\
& \frac{-10}{7} & \frac{-17}{7}
\end{array}\right]_{\text {RREF }}-\frac{2}{3}\left(-\frac{10}{7}\right)
$$

$$
\begin{gathered}
z=t \\
x+\frac{9}{7} z=\frac{9}{7} \Rightarrow x=\frac{9}{7}-\frac{9}{7} z \Rightarrow x=\frac{9}{7}-\frac{9}{7} t \\
y-\frac{10}{7} z=\frac{-17}{7} \Rightarrow y=\frac{-17}{7}+\frac{10}{7} z \Rightarrow y=\frac{17}{7}+\frac{10}{7} t
\end{gathered}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{7} \\
\frac{-17}{7} \\
0
\end{array}\right]+t\left[\begin{array}{c}
-\frac{9}{7} \\
\frac{10}{7} \\
1
\end{array}\right]
$$

2.2 \# 49

Find the point of intersection of $\vec{x}=\vec{p}+s \vec{u}$ and $\bar{x}=\bar{q}+t \vec{v}$, if it exists.

$$
\begin{aligned}
& \bar{p}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] \quad \bar{q}=\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right] \quad \vec{u}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& \bar{v}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \\
& \vec{x}=\vec{x} \\
& \vec{p}+s \vec{u}=\bar{q}+t \vec{v} \\
& s \vec{u}-t \vec{v}=\vec{q}-\vec{p} \\
& \begin{array}{c}
s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0 \\
-1
\end{array}\right] \\
\rightarrow\left[\begin{array}{ll|c}
1 & t \\
0 & -2 & -4 \\
0 & -3 & 0 \\
1 & -1 & -1
\end{array}\right]
\end{array} \\
& R_{3}-R_{1}\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & -3 & 0 \\
0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{r}
R_{2} \leftrightarrow R_{3} \quad\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 1 & 3 \\
0 & -3 & 0
\end{array}\right] \\
R_{3}+3 R_{2}
\end{array} \begin{array}{lll} 
& \left.\begin{array}{ll|l} 
& & \\
0 & 0 & 9
\end{array}\right] \\
& \text { No solution }
\end{array}
$$

In $\mathbb{R}^{3}$ we can have 2 lines that are nonparallel and non-intersecting.
2.2 \# 29

Solve $\left[\begin{array}{cc|c}r & s & \\ 2 & 1 & 3 \\ 4 & 1 & 7 \\ 2 & s & -1\end{array}\right]$

$$
\begin{aligned}
\sim & {\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \stackrel{{ }_{R R G F}}{ } \text { no info } } \\
& r=2 \\
& \mathcal{A}=-1 \\
& {\left[\begin{array}{l}
r \\
s
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] }
\end{aligned}
$$

