Test 1
FR 1 FEB 2

$$
1.1-1.4,2.1-2.2
$$

5 Question, with parts
Bring calculator
Bring music earplugs
Practice Problems on website

Example: Solve by Gauss-Jordan Elimination:

$$
\begin{aligned}
& w+x+2 y+10 z=5 \\
& x+y+z=2 \\
& w+3 x+4 y+12 z=9 \\
& {\left[\begin{array}{cccc|c}
\omega & x & y & z & \# \\
1 & 1 & 2 & 10 & 5 \\
0 & 1 & 1 & 1 & 2 \\
1 & 3 & 4 & 12 & 9
\end{array}\right]} \\
& R_{3}-R_{1}\left[\begin{array}{cccc|c}
1 & 1 & 2 & 10 & 5 \\
0 & 1 & 1 & 1 & 2 \\
0 & 2 & 2 & 2 & 4
\end{array}\right] \\
& R_{1}-R_{2}-2 R_{2}\left[\begin{array}{cccc|c}
\omega & x & y & z & \\
0 & 0 & 1 & 9 & 3 \\
0 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { REF } \\
& y=a \\
& z=t
\end{aligned}
$$

(y and z are free variables
s and t are parameters)

$$
\begin{aligned}
& w+y+9 z=3 \Rightarrow w=3-y-9 z \Rightarrow w=3-1-9 t \\
& x+y+z=2 \Rightarrow x=2-y-z \Rightarrow x=2-1-t \\
&=\left[\begin{array}{l}
w \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-9 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Example: Find the intersection of the two lines:

$$
\begin{aligned}
& \begin{array}{r}
\vec{x}=\left[\begin{array}{c}
-5 \\
6 \\
5
\end{array}\right]+s\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \text { and } \vec{x}=\left[\begin{array}{c}
-5 \\
4 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\vec{x}=\vec{x}
\end{array} \\
& {\left[\begin{array}{c}
-5 \\
6 \\
5
\end{array}\right]+s\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
4 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& \mathcal{A}\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]-t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
4 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-5 \\
6 \\
5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\left(\begin{array}{cc}
2 \\
1 \\
-1
\end{array}\right)\right.} \\
& R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc|c}
1 & -1 & -2 \\
2 & -1 & 0 \\
-1 & -1 & -6
\end{array}\right] \\
& \begin{array}{c}
R_{2}-2 R_{1} \\
R_{3}+R_{1}
\end{array}\left[\begin{array}{cc|c}
1 & -1 & -2 \\
0 & 1 & 4 \\
0 & -2 & -8
\end{array}\right] \\
& R_{1}+R_{2}+2 R_{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 4
\end{array}\right] \\
& s=2, t=4
\end{aligned}
$$

Example: How many solutions does the following system have?

$$
\begin{aligned}
& x+k y=1 \\
& k x+y=1 \\
& {\left[\begin{array}{ll|l}
1 & k & 1 \\
k & 1 & 1
\end{array}\right]} \\
& R_{2}-k R_{1}\left[\begin{array}{cc|c}
1 & k & 1 \\
0 & 1-k^{2} & 1-k
\end{array}\right] \\
& \begin{array}{l}
1-k^{2} \neq 0 \\
(1-k)(1+k)=0
\end{array} \\
& \frac{R_{2}}{1-k^{2}}\left[\begin{array}{cc|c}
(1) & k & 1 \\
0 & 1 & \frac{1-k}{1-k^{2}}
\end{array}\right] \\
& \text { I unique solution } \\
& \begin{array}{l}
k=1 / \forall k=-1 \\
{\left[\begin{array}{ll|l}
1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ll|l}
1 & -1 & 1 \\
\hline 0 & 0 & 2
\end{array}\right]}
\end{array} \\
& \text { - many }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
N_{0} \text { Solution if } k=-1 \\
\text { o-mayy soluono if } k=1 \\
\text { I noiguesolution if } 1-k^{2} \neq 0
\end{array}\right.
$$

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF. solvable
Fact: If a system is consistent then:
rank+(\# of parameters in solution) $=\#$ of variables
Example: Verify the fact for the following system:

$$
\overrightarrow{ } \quad \begin{array}{lll}
\downarrow & \downarrow & \\
& {\left[\begin{array}{lll|l}
1 & 0 & 3 & 4 \\
0 & 1 & 5 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] R R \in F}
\end{array}
$$

rank $=2$
\# of parameters insolution $=1$
\neq of variables $=3$

Example: Rephrase the fact in terms of columns of the coefficient matrix.

