Example: Solve:

$$
\begin{aligned}
& 2 x-3 y=8 \\
& -4 x+6 y=20 \\
& {\left[\begin{array}{cc|c}
2 & -3 & 8 \\
-4 & 6 & 20
\end{array}\right]} \\
& \text { Get a I } \\
& \frac{R_{1}}{2}\left[\begin{array}{cc|c}
1 & -\frac{3}{2} & 4 \\
-4 & 6 & 20
\end{array}\right] \\
& \text { Get } O^{\prime} \text { s in rest of Glum I }
\end{aligned}
$$

$$
0 x+0 y=36 \text { impossible }
$$

The system has no solution.

Fact: A system has no solution if the following type of row appears while performing row operations:
[all zeros | nonzero]

Example: Solve:

$$
\begin{gathered}
\begin{array}{c}
2 x-3 y=8 \\
-4 x+6 y \\
x
\end{array} y^{-16} \\
{\left[\begin{array}{cc|c}
2 & -3 & 8 \\
-4 & 6 & -16
\end{array}\right]} \\
\frac{R_{1}}{2}\left[\begin{array}{ccc|c}
1 & -\frac{3}{2} & 4 \\
-4 & 6 & -16
\end{array}\right]
\end{gathered}
$$

Get o's in rest of Glume 1

$$
\begin{aligned}
& R_{2}+4 R_{1}\left[\begin{array}{cc|c}
x & -\frac{y_{3}}{2} & 4 \\
0 & 0 & 0
\end{array}\right] \\
& \text { Current Row - \# (Pivot Row) }
\end{aligned}
$$

Glume for y has no pivot: y is a free variable.

$$
\begin{aligned}
& \quad y=t \quad(t \text { is a parameter }) \\
& 1 x-\frac{3}{2} y=4 \Rightarrow x=4+\frac{3}{2} y \Rightarrow x=4+\frac{3}{2} t \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right] \quad \text { System has }} \\
& \text { infinitely-many solutions. }
\end{aligned}
$$

Example: Solve:

$$
\begin{aligned}
& x=5 \\
& 2 x+3 y=4 \\
& 3 x+4 y=7 \\
& {\left[\begin{array}{ll|l}
1 & 0 & 5 \\
2 & 3 & 4 \\
3 & 4 & 7
\end{array}\right]} \\
& \text { Get o's in rest of Gluon } 1 \\
& R_{2}-2 R_{1}\left[\begin{array}{ll|l}
1 & 0 & 5 \\
0 & 3 & -6 \\
R_{3}-3 R_{1} & 4 & -8
\end{array}\right] \\
& \frac{R_{2}}{3}\left[\begin{array}{ll|c}
1 & 0 & 5 \\
0 & 1 & -2 \\
0 & 4 & -8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 1 x+0 y=5 \quad \Rightarrow \\
& x=5 \\
& \begin{array}{c}
y=-2 \\
\text { unique solution }
\end{array} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]}
\end{aligned}
$$

Definition: Back-substitution is the process of solving a system from the bottom aquadion upwards.

Example: Solve by back-substitution:

$$
\begin{aligned}
4 x+y+z & =15 \\
3 y+5 z & =29 \\
2 z & =8
\end{aligned}
$$

$$
\begin{aligned}
& 2 z=8 \Rightarrow z=4 \\
& 3 y+5 z=29 \Rightarrow 3 y+20=29 \Rightarrow y=3 \\
& 4 x+y+z=15 \Rightarrow 4 x+3+4=15 \Rightarrow x=2 \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] }
\end{aligned}
$$

Comment: Most systems can't be solved by back-substitution.

2.2 Solving Systems

Definition: A matrix is in row-echelon form (REF) if:
any zero rows are at the bottom AND
the leading nonzero entries of each row move down and right
Comment: The following matrices are in REF:
$\left[\begin{array}{ccc}6 & 0 & -1 \\ 0 & 0 & (3 \\ 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & 4 & 7 \\ 0 & 0 & 0\end{array}\right]$

Definition: An augmented matrix is in REF if the coefficient matrix is in REF.
Comment: The following matrices are in REF:
$\left[\begin{array}{ccc|c}6 & 0 & -1 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3\end{array}\right] \quad\left[\begin{array}{ccc|c}(2) & 3 & -1 & 0 \\ 0 & 4 & 7 & 0 \\ 0 & 0 & 0 & 9\end{array}\right]$
Definition: One method of solving a system is Gaussian Elimination. The augmented matrix is transformed to REF using elementary row operations. The system is then solved by back-substitution.

Example: Solve by Gaussian Elimination:

$$
\begin{aligned}
& x+2 y+z=6 \\
& 2 x+2 y=8 \\
& 3 y+z=8 \\
& {\left[\begin{array}{lll|l}
1 & 2 & 1 & 6 \\
2 & 2 & 0 & 8 \\
0 & 3 & 1 & 8
\end{array}\right]} \\
& R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 6 \\
0 & -2 & -2 & -4 \\
0 & 3 & 1 & 8
\end{array}\right] \\
& \frac{R_{2}}{-2}\left[\begin{array}{lll|l}
1 & 2 & 1 & 6 \\
0 & 1 & 1 & 2 \\
0 & 3 & 1 & 8
\end{array}\right] \\
& R_{3}-3 R_{2}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 6 \\
0 & 1 & 1 & 2 \\
0 & 0 & -2) & 2
\end{array}\right] \text { REF } \\
& -2 z=2 \quad \Rightarrow \quad z=-1 \\
& y+z=2 \Rightarrow y-1=2 \Rightarrow y=3 \\
& x+2 y+z=6 \Rightarrow x+6-1=6 \Rightarrow x=1 \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]}
\end{aligned}
$$

Definition: A matrix is in reduced row-echelon form (RREF) if: the matrix is in REF,
the leading nonzero entry in each row is 1 , AND
these leading ones have zeros everywhere else in their columns
Comment: The following matrices are in RREF:
$\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Comment: The following matrix is in REF but not RREF:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

Definition: An augmented matrix is in RREF if the coefficient matrix is in RREF.
Comment: The following matrices are in RREF:
$\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right] \quad\left[\begin{array}{ccc|c}1 & 5 & 0 & 9 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 9\end{array}\right]$

Definition: Another method of solving a system is Gauss-Jordan Elimination. The augmented matrix is transformed to RREF using elementary row operations. This is typically faster than Gaussian Elimination.

Example: Solve by Gauss-Jordan Elimination:

$$
\left.\begin{array}{c}
\begin{array}{c}
x+2 y+3 z=7 \\
3 x+3 y+3 z=15 \\
5 x+7 y+9 z=29
\end{array} \\
{\left[\begin{array}{lll|l}
1 & 2 & 3 & 7 \\
3 & 3 & 3 & 15 \\
5 & 7 & 9 & 29
\end{array}\right]} \\
R_{2}-3 R_{1}\left[\begin{array}{ccc|c}
1 & 2 & 3 & 7 \\
0 & -3 & -6 & -6 \\
0 & -3 & -6 & -6
\end{array}\right] \\
R_{3}-S R_{1}\left[\begin{array}{lll|l}
1 & 2 & 3 & 7 \\
0 & 1 & 2 & 2 \\
0 & -3 & -6 & -6
\end{array}\right] \\
\frac{R_{2}}{-3}\left[\begin{array}{lll}
1 & z & \\
R_{1}-2 R_{2} & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
R_{3}+3 R_{2}
\end{array}\right] \text { RREF }
$$

Circle the leading non-zess entry in each row.
Any Glumn without a circle gets a parameter.

$$
\begin{aligned}
& z=t \\
& 1 x+0 y-1 z=3 \Rightarrow x=3+z \Rightarrow x=3+t \\
& y+2 z=2 \Rightarrow y=2-2 z \Rightarrow y=2-2 t \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]}
\end{aligned}
$$

Example: Solve by Gauss-Jordan Elimination:

$$
\begin{gathered}
\begin{array}{c}
x+y-6 z=17 \\
2 x+2 y-8 z=22 \\
3 x+3 y-14 z=39
\end{array} \\
{\left[\begin{array}{ccc|c}
1 & 1 & -6 & 17 \\
2 & 2 & -8 & 22 \\
3 & 3 & -14 & 39
\end{array}\right]} \\
R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 1 & -6 & 17 \\
0 & 0 & 4 & -12 \\
0 & 0 & 4 & -12
\end{array}\right] \\
R_{3}-3 R_{1} \\
\frac{R_{2}}{4}\left[\begin{array}{ccc|c}
1 & 1 & -6 & 17 \\
0 & 0 & 1 & -3 \\
0 & 0 & 4 & -12
\end{array}\right] \\
R_{1}+6 R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] R R E F \\
R_{3}-4 R_{2}\left[\begin{array}{l}
y=k
\end{array}\right] \\
x+y=-1 \Rightarrow x=-1-k \\
y \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right]+k\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]}
\end{gathered}
$$

