1.4 The Cross Product

1.4 The Cross Product

The cross product @ x ¥ is defined for @ and ¢ in R3.

Example: Let @ =[1,2,1] and ¢ = [3, —1,4]. Calculate @ x v.
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Fact: Let @ and ¢ be in R3. Then:
UX U= —(uXx7) AND
i X U is orthogonal to both # and v
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1.4 The Cross Product

Fact: The vector @ x ¥ is a normal for the plane containing @ and . The direction of @ x ¥

is determined by the Right Hand Rule. - 2
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Example: Find the general form of the plane through A = (1,3,6), B = (2,1,4) and
C=(1,-1,5).

[/

vereal £ 5] (3)= [ [

33



1.4 The Cross Product

Comment: Recall that @ - ¢ = ||u]| ||V]| cos @ for @, v in R™.
Fact: If @ and ¢ are in R? then || x ¥]| = ||]] ||7]| sin 6.

Example: Let @ and ¢ be in R3. Consider the triangle below.
Show that the area of the triangle is 1||& x |
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Fact: Let @ and ¢ be in R3. Consider the parallelogram below, which can be divided into
two triangles with equal area. Then:

Area(triangle)= 1||@ x ]| AND

Area(parallelogram)= ||u x ]|
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1.4 The Cross Product

Example: Find the area of the triangle determined by @ = [1,4,5] and ¢ = [2, 3, 6].
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