Weather Updates are posted at WWW. camosun.ca

Part 3. Planes in \mathbb{R}^{3}

Example: Consider the plane through $P=(1,-1,3)$ with normal $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Describe the plane in both normal and general form.

Definition: The vector form for a plane in \mathbb{R}^{3} is $\vec{x}=\vec{p}+s \vec{u}+t \vec{v}$ where:
\vec{u} and \vec{v} are nonparallel direction vectors
s and t represent any real numbers

$$
\vec{x}=\vec{p}+s \vec{u}+t \vec{v}
$$

Example: Consider the plane through $P=(6,0,0), Q=(0,6,0)$ and $R=(0,0,3)$. Describe the plane in vector and parametric form.
Direction vectors

$$
\begin{aligned}
& \vec{u}=\overrightarrow{P Q}=\left[\begin{array}{c}
-6 \\
6 \\
0
\end{array}\right] \\
& \vec{v}=\overrightarrow{P R}=\left[\begin{array}{c}
-6 \\
0 \\
3
\end{array}\right]
\end{aligned}
$$

(nonparallel)
Vector $\vec{x}=\vec{p}+s \vec{u}+t \vec{v}$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-6 \\
6 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-6 \\
0 \\
3
\end{array}\right]
$$

Parametric: $x=6-6 s-6 t, y=6 s \quad, \quad z=3 t$
Line in \mathbb{R}^{2} Line in \mathbb{R}^{3} Plane in \mathbb{R}^{3}
General $\quad a x+b y=c$
Normal $\quad \stackrel{\rightharpoonup}{n} \cdot \vec{x}=\vec{n} \cdot \stackrel{\rightharpoonup}{p}$
Vector $\quad \vec{x}=\vec{p}+t \vec{d} \quad \vec{x}=\vec{p}+t \vec{d} \quad \vec{x}_{x}=\vec{p}+s \vec{u}+t \vec{u}$
Parametric $\left\{\begin{array}{l}x= \\ y=\end{array} \quad\left\{\begin{array}{l}x= \\ y= \\ z=\end{array} \quad\left\{\begin{array}{l}x= \\ y= \\ z=\end{array}\right.\right.\right.$

Part 4. Geometry Problems
Example: Find the distance between $B=(1,3,3)$ and the plane $\mathcal{P}: x+y+2 z=7$

Let $A=$ any point on plane.

$$
\begin{aligned}
\text { Distance } & =\left\|\operatorname{proj}_{\vec{n}} \overrightarrow{A B}\right\| \\
A & =(7,0,0) \\
\overrightarrow{A B} & =[-6,3,3] \\
\vec{n} & =[1,1,2] \\
\text { proj, } \overrightarrow{A B} & =\frac{\vec{n} \cdot \overrightarrow{A B}}{\|\vec{n}\|^{2}} \vec{n}=\frac{3}{6}[1,1,2] \\
\text { Distance } & =\left\|\frac{3}{6}[1,1,2]\right\|=\frac{3}{6} \sqrt{6}=\frac{\sqrt{6}}{2}
\end{aligned}
$$

Example: Find the distance between $B=(1,1,0)$ and the line through $A=(0,1,2)$ with

Comment: To find the distance between parallel planes, pick a point on one of the planes. Find the distance between that point and the other plane.

Comment: To find the distance between parallel lines, pick a point on one of the lines. Find the distance between that point and the other line.

Definition: The angle between planes is defined as the angle between their normals.

Definition: Parallel planes have parallel normals. Perpendicular planes have perpendicular normals.

$$
\begin{aligned}
& \text { Write an equation that describes } \\
& \qquad \begin{array}{c}
\vec{n}_{1} \text { and } \vec{n}_{2} \text { are parallel " } \\
\qquad \vec{n}_{1}=k \vec{n}_{2} \quad(k \neq 0)
\end{array}
\end{aligned}
$$

$$
\vec{n}_{1} \cdot \vec{n}_{2}=0
$$

