Weather Updates are posted at WWW. Camosun, ca

Part 3. Planes in \mathbb{R}^3

Example: Consider the plane through P = (1, -1, 3) with normal $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$. Describe the plane in both normal and general form.

Definition: The vector form for a plane in \mathbb{R}^3 is $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$ where: \vec{u} and \vec{v} are nonparallel direction vectors s and t represent any real numbers

Example: Consider the plane through P = (6, 0, 0), Q = (0, 6, 0) and R = (0, 0, 3). Describe the plane in vector and parametric form. _

Direction vectors
$$\overline{u} = \overline{Pa} = \begin{bmatrix} -6 \\ -6 \end{bmatrix}$$

 $\overline{V} = \overline{PR} = \begin{bmatrix} -6 \\ -6 \end{bmatrix}$
 $Vector \overline{x} = \overline{P} + \overline{Su} + \overline{Uv}$
 $\begin{bmatrix} 2 \\ -8 \end{bmatrix} = \begin{bmatrix} 6 \\ -9 \end{bmatrix} + \overline{S} \begin{bmatrix} -6 \\ -6 \end{bmatrix} + \overline{S} \begin{bmatrix} -6 \\ -6 \end{bmatrix}$
Parametric : $2t = 6 - 6s - 6t$, $y = 6s$, $z = 3t$
Example: Summarize the twelve descriptions
Line in \mathbb{R}^2 Line in \mathbb{R}^3 Plane in \mathbb{R}^3
General $a_{2t} + b_y = c$ X $a_{2t} + b_{yt} + c_z = d$
Normal $\overline{n} \cdot \overline{z} = \overline{n} - \overline{p}$ X $\overline{n} \cdot \overline{z} = \overline{n} \cdot \overline{p}$
Vector $\overline{z} = \overline{p} + \overline{td}$ $\overline{z} = \overline{p} + \overline{td}$ $\overline{z} = \overline{p} + \overline{su} + \overline{tu}$
Parametric $\begin{array}{c} 5z = \\ y = \\ y = \\ y = \\ z = \end{array}$ $\begin{array}{c} 5z = \\ y = \\ z = \\ z = \end{array}$ $\begin{array}{c} 2z = \\ y = \\ z = \\ z = \end{array}$

٦

Part 4. Geometry Problems

Example: Find the distance between B = (1, 3, 3) and the plane $\mathcal{P} : x + y + 2z = 7$

Proj
$$\overrightarrow{AB}$$

 \overrightarrow{AB}
 \overrightarrow{AB}

Comment: To find the distance between parallel planes, pick a point on one of the planes. Find the distance between that point and the other plane.

Comment: To find the distance between parallel lines, pick a point on one of the lines. Find the distance between that point and the other line.

Definition: The **angle between planes** is defined as the angle between their normals.

Definition: Parallel planes have parallel normals. Perpendicular planes have perpendicular normals.

Write an equation that describes
"
$$\vec{n}_1$$
 and \vec{n}_2 are parallel"
 $\vec{n}_1 = k \vec{n}_2$ ($k \neq o$)
Write an equation that describes
" \vec{n}_1 and \vec{n}_2 are perpendicular"
 $\vec{n}_1 \cdot \vec{n}_2 = 0$