No Formula Sheet for Math 251

Test 1 Fri Feb 2 1.1-1.4, 2.1-2.2

1.3 Lines and Planes

Part 1. Lines in \mathbb{R}^2

Definition: The general form of a line in \mathbb{R}^2 is ax + by = c

Example: Consider the line 3x + y = 1. Find two points on the line and graph the line.

Definition: A normal vector is orthogonal to a given line. It is written \vec{n} . Its components are the coefficients from the general form.

Definition: The **normal form** of a line in \mathbb{R}^2 is $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ where $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ and \vec{p} is the vectorization of any point on the line.

Example: Describe the line 3x + y = 1 in normal form. Show that expanding normal form gives general form.

Definition: A direction vector for a line is $\vec{d} = \vec{PQ}$, where P and Q are any two points on the line.

Definition: The vector form for a line in \mathbb{R}^2 is $\vec{x} = \vec{p} + t\vec{d}$, where t represents any real number.

Example: Describe the line 3x + y = 1 in vector form. Show that as t varies, the line is traced out.

Definition: The **parametric form** for a line in \mathbb{R}^2 is:

$$\begin{cases} x = a + bt\\ y = c + dt \end{cases}$$

Example: Describe the line 3x + y = 1 in parametric form.

Vector Form
$$\vec{x} = \vec{p} + t d$$

Vector Form $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} i \\ i \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \end{bmatrix}$
Expand: $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} i \\ i \end{bmatrix} + \begin{bmatrix} t \\ -3t \end{bmatrix}$
 $\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} t \\ 1-3t \end{bmatrix}$
Vanetic Form $\begin{bmatrix} x = t \\ y = 1-3t \end{bmatrix}$

Comment: A given line can be described in a specific form in multiple ways, for example 3x + y = 1 and 6x + 2y = 2 are general forms for the same line.

Example: Summarize the four forms of a line in \mathbb{R}^2

 $3\chi + \gamma = 1$ General form $\begin{bmatrix} 3\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 4\\ y \end{bmatrix} = \begin{bmatrix} 3\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0\\ 1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} -3 \end{bmatrix}$ J vector tom J parametric form $\int x = t$ $\int y = 1 - 3t$

Part 2. Lines in \mathbb{R}^3

Example: Consider the line through P = (2, 1, 12) and Q = (0, -3, 6). Describe the line in both vector and parametric form.

Fact: ax + by + cz = d is the general form for a plane in \mathbb{R}^3 .

Comment: General form for a line in \mathbb{R}^3 is inconvenient so we will omit it. It would consist of two equations, describing the intersection of two planes.

Comment: Similarly we omit normal form for a line in \mathbb{R}^3 .

Part 3. Planes in \mathbb{R}^3

Example: Consider the plane through P = (1, -1, 3) with normal $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$. Describe the plane in both normal and general form.

Definition: The vector form for a plane in \mathbb{R}^3 is $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$ where: \vec{u} and \vec{v} are nonparallel direction vectors s and t represent any real numbers

