No Formula Sheet for Math 251

$$
\begin{aligned}
& \frac{\text { Test } 1}{\text { Fri Feb } 2} \\
& 1.1-1.4,2.1-2.2
\end{aligned}
$$

1.3 Lines and Planes

Part 1. Lines in \mathbb{R}^{2}
Definition: The general form of a line in \mathbb{R}^{2} is $a x+b y=c$
Example: Consider the line $3 x+y=1$. Find two points on the line and graph the line.

Definition: A normal vector is orthogonal to a given line. It is written \vec{n}. Its components are the coefficients from the general form.

$$
3 x+y=1
$$

$$
\vec{n}=[3,1]
$$

$$
\begin{aligned}
& \text { Set } x=0: \quad y=1 \quad P(0,1) \\
& \text { Set } \begin{aligned}
x=1 \therefore \quad 3+y & =1 \\
y & =-2
\end{aligned} \\
& \text { Q }(1,-2)
\end{aligned}
$$

Definition: The normal form of a line in \mathbb{R}^{2} is $\vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{p}$
where $\vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and \vec{p} is the vectorization of any point on the line.
Example: Describe the line $3 x+y=1$ in normal form. Show that expanding normal form gives general form.

$$
\begin{aligned}
& \vec{n}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& \vec{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& f=(0,1) \vec{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \text { normal form } \\
& \text { normal form } \left.\quad \begin{array}{l}
\vec{n}=\vec{n} \cdot p \\
\\
\text { general form } \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& 3 x+y=1
\end{aligned}
$$

Definition: A direction vector for a line is $\vec{d}=\overrightarrow{P Q}$, where P and Q are any two points on the line.

Definition: The vector form for a line in \mathbb{R}^{2} is $\vec{x}=\vec{p}+t \vec{d}$, where t represents any real number.

Example: Describe the line $3 x+y=1$ in vector form. Show that as t varies, the line is traced out.

$$
Q=(1,-2)
$$

$$
\begin{array}{r}
\text { direction vector } \vec{d}=\overrightarrow{P Q}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \quad \text { Think } Q-p \\
\left.\quad \begin{array}{l}
\vec{x}=\vec{p} \\
\text { vector form } \\
\\
{\left[\begin{array}{l}
c \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+t=0}
\end{array} \quad \begin{array}{c}
1 \\
-3
\end{array}\right]
\end{array}
$$

$$
\vec{x}=\vec{p}+t \vec{d}
$$

Definition: The parametric form for a line in \mathbb{R}^{2} is:

$$
\left\{\begin{array}{l}
x=a+b t \\
y=c+d t
\end{array}\right.
$$

Example: Describe the line $3 x+y=1$ in parametric form.

$$
\begin{aligned}
& \text { Vector for } \quad \vec{x}=\vec{p}+t \vec{d} \\
& \text { vector John } \\
& \text { Expand } \\
& \text { Parametric Form } \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
i
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-3
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
t \\
-3 t
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
4
\end{array}\right]=\left[\begin{array}{c}
t \\
1-3 t
\end{array}\right]} \\
& \left\{\begin{array}{l}
x=t \\
y=1-3 t \\
24
\end{array}\right.
\end{aligned}
$$

Comment: A given line can be described in a specific form in multiple ways, for example $3 x+y=1$ and $6 x+2 y=2$ are general forms for the same line.

Example: Summarize the four forms of a line in \mathbb{R}^{2}

$$
\begin{aligned}
& 3 x+y=1 \\
& {\left[\begin{array}{l}
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
-3
\end{array}\right]} \\
& \left\{\begin{array}{l}
x=t \\
y=1-3 t
\end{array}\right.
\end{aligned}
$$

Part 2. Lines in \mathbb{R}^{3}

Example: Consider the line through $P=(2,1,12)$ and $Q=(0,-3,6)$. Describe the line in both vector and parametric form.

$$
\begin{aligned}
& \text { vector form } \vec{x}=\vec{p}+t \vec{d} \\
& \vec{d}=\overrightarrow{P Q}=\left[\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right] \quad \text { Think } Q-P \\
& \text { Vector form }\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
12
\end{array}\right]+t\left[\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right] \\
& \text { Parametric fou }\left\{\begin{array}{l}
x=2-2 t \\
y=1-4 t \\
z=12-6 t
\end{array}\right. \\
& \text { Definition: A plane is an infinite flat surface. }
\end{aligned}
$$

Fact: $a x+b y+c z=d$ is the general form for a plane in \mathbb{R}^{3}.
Comment: General form for a line in \mathbb{R}^{3} is inconvenient so we will omit it. It would consist of two equations, describing the intersection of two planes.

$$
\text { Line: }\left\{\begin{array}{l}
2 x+4 y+5 z=9 \\
3 x+2 y+z=7
\end{array}\right.
$$

Comment: Similarly we omit normal form for a line in \mathbb{R}^{3}.

Part 3. Planes in \mathbb{R}^{3}

Example: Consider the plane through $P=(1,-1,3)$ with normal $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Describe the plane in both normal and general form.

Definition: The vector form for a plane in \mathbb{R}^{3} is $\vec{x}=\vec{p}+s \vec{u}+t \vec{v}$ where: \vec{u} and \vec{v} are nonparallel direction vectors s and t represent any real numbers

$$
\vec{x}=\vec{p}+s \stackrel{\rightharpoonup}{u}+t \vec{v}
$$

