Assignment due Monday
Suggested HW for Gmplex Numbers Omit \#子

Example: Calculate $i^{0}, i^{1}, i^{2}, i^{3}, i^{4}$ and i^{5}.

$$
\begin{aligned}
& i^{0}=1 \\
& i^{4}=1
\end{aligned}
$$

$$
\begin{aligned}
& i^{\prime}=i \\
& i^{5}=i
\end{aligned}
$$

$$
i^{3}=-i
$$

$$
4(67)+3
$$

Fact: Let n be a non-negative integer. Then: $i^{4 n}=1, \quad i^{4 n+1}=i, \quad i^{4 n+2}=-1$ and $i^{4 n+3}=-i$.

Example: Simplify i^{271}.

$$
\begin{aligned}
& \frac{271}{4}=67+0.75 \\
& 271=4(67)+3
\end{aligned}
$$

Example: Recall that:

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
\end{aligned}
$$

Show that $e^{i \theta}=\cos \theta+i \sin \theta$.
$e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\ldots$

Example: Derive the most beautiful equation in mathematics by subbing $\theta=\pi$ into the equation $e^{i \theta}=\cos \theta+i \sin \theta$.

Definition: The rectangular form of a complex number is $z=a+b i$. The polar form of a complex number is $z=|z|[\cos \theta+i \sin \theta]$. The exponential form of a complex number is $z=|z| e^{i \theta}$.

Now we'll look at complex eigenvalues and eigenvectors.

Example: Let $A=\left[\begin{array}{cc}3 & -13 \\ 5 & 1\end{array}\right]$.
a) Find the eigenvalues.

$$
\begin{aligned}
& \left|\begin{array}{l}
A-\lambda I
\end{array}\right|=0 \\
& \left|\begin{array}{cc}
3-\lambda-13 \\
5 & 1-\lambda
\end{array}\right|=0 \\
& (3-\lambda)(1-\lambda)+65=0 \\
& 3-3 \lambda-\lambda+\lambda^{2}+65=0 \\
& \lambda^{2}-4 \lambda+68=0 \\
& \lambda=\frac{4 \pm \sqrt{16-4(1)(68)}}{2} 16 i \\
& =\frac{4 \pm \sqrt{256} \sqrt{256} \sqrt{-1}}{2} \\
& =\frac{4 \pm 16 i}{2} \\
& =2 \pm 8 i{ }^{215}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) Find a basis for one of the eigenspaces. } \\
& \lambda=2+8 i: \quad[A-(2+8 i) I \mid \vec{O}] \\
& {\left[\begin{array}{cc|c}
1-8 i & -13 & 0 \\
5 & -1-8 i & 0
\end{array}\right]} \\
& R_{1} \leftrightarrow R_{2} \quad\left[\begin{array}{cc|c}
5 & -1-8 i & 0 \\
1-8 i & -13 & 0
\end{array}\right] \\
& \frac{R_{1}}{5}\left[\begin{array}{cc|c}
1 & \frac{-1-8 i}{5} & 0 \\
1-8 i & -13 & 0
\end{array}\right] \\
& \text { Method \#1 }\left[\begin{array}{cc|c}
1 & \frac{-1-8 i}{5} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The system has nontrivial solutions.

$$
\begin{aligned}
& \text { Method } \neq 2 \\
& R_{2}-(1-8 i) R_{1}
\end{aligned}\left[\begin{array}{cc|c}
1 & \frac{-1-8 i}{5} & 0 \\
0 & \uparrow & 0
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}+\frac{(-1-8 i)}{5} x_{2}=0 \Rightarrow x_{1}=\frac{1+8 i}{5} t \\
& \vec{x}=\left[\begin{array}{c}
\frac{1+8 i}{5} \\
1
\end{array}\right] t \quad \text { Basis for } E_{2+8 i}=\left\{\left[\begin{array}{c}
1+8 i \\
5
\end{array}\right]\right\}
\end{aligned}
$$

c) Find a basis tor the other eigenspace

$$
\begin{aligned}
& \lambda=2-8 i \text {; } \\
& {[A-(2-8 i) I \mid \overrightarrow{0}]} \\
& {\left[\begin{array}{cc|c}
1+8 i & -13 & 0 \\
5 & -1+8 i & 0
\end{array}\right]} \\
& \text { REF }=\left[\begin{array}{cc|c}
x_{1} & \frac{x_{2}}{1}+8 i & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x_{1}+\frac{(-1+8 i)}{5} x_{2}=0 \Rightarrow x_{1}=-\frac{(-1+8 i)}{5} x_{2} \\
& \vec{x}=\left[\begin{array}{c}
\frac{1-8 i}{5} \\
1
\end{array}\right] t \\
& =\frac{1-8 i}{5} t \\
& \text { 217 Basis for } E_{2-8 i}^{5}=\left\{\begin{array}{c}
1-8 i \\
5
\end{array}\right\}
\end{aligned}
$$

