Assignment due Monday Suggested HW for Emplex Numbers Omit #7

4(67) + 3

(-L

= 1 + (67) = 3= 1 + (67) = 3 = (1 +) 67 = 3

Example: Calculate i^0 , i^1 , i^2 , i^3 , i^4 and i^5 .

Fact: Let n be a non-negative integer. Then: $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$ and $i^{4n+3} = -i$.

Example: Simplify i^{271} . 271 = 67 + 0.75271 = 4(67) + 3

Example: Recall that: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

Show that $e^{i\theta} = \cos\theta + i\sin\theta$. $|+i\theta + (i\theta)^{2} + (i\theta)^{3} + ...,$ $= 1 + i\theta + \frac{i^{2}\theta}{21} + \frac{i^{3}\theta^{3}}{21} + \dots$ $= |+i\theta - \frac{\theta'}{2!} - \frac{i\theta'}{2!} + \dots$ $= \left[1 - \frac{\theta}{2} + \dots\right] + i\left[\theta - \frac{\theta}{2} + \dots\right]$ + isino Cosp 213

Example: Derive the most beautiful equation in mathematics by subbing $\theta = \pi$ into the equation $e^{i\theta} = \cos \theta + i \sin \theta$.

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\theta = \pi : e^{i\pi} = \cos\pi + i\sin\pi$$

$$e^{i\pi} = -1$$

$$e^{i\pi} + 1 = 0$$

Gombines the 5 most
important Gastants: 0, 1, Ti, e, i

Definition: The rectangular form of a complex number is z = a + bi. The **polar form** of a complex number is $z = |z| [\cos \theta + i \sin \theta]$. The **exponential form** of a complex number is $z = |z|e^{i\theta}$.

Now we'll look at complex eigenvalues and eigenvectors.

Example: Let $A = \begin{vmatrix} 3 & -13 \\ 5 & 1 \end{vmatrix}$. a) Find the eigenvalues. $|A - \lambda I| = 0$ $\begin{vmatrix} 3-\lambda & -13 \\ 5 & 1-\lambda \end{vmatrix} = 0$ $(3-\lambda)(1-\lambda) + 65 =$ $3 - 3\lambda - \lambda + \lambda^2 + 65 =$ $\lambda^2 - 4\lambda + 68 = 0$ $= 4 \pm 16 - 4(1)(68)$ 16î 56 256 -1 +215

b) Find a basis for one of the eigenspaces. [A-(2+8i)]] 6 A=2+81 : $\begin{bmatrix} 1-8i & -13 & 0 \\ 5 & -1-8i & 0 \end{bmatrix}$ [5 -1-8i]0] [1-8i -13]0] $R_1 \leftarrow R_2$ $\frac{R_{1}}{5} \begin{bmatrix} 1 & -\frac{1-8i}{5} & 0 \\ 1-8i & -13 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & \frac{-1-8i}{5} & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Method #1 The system has nontrivial solutions. Method #2 $\begin{bmatrix} 1 & -1-8i \\ -5 & 0 \end{bmatrix}$ $R_2 - (1-8i)R_1 \begin{bmatrix} 0 & -1-8i \\ -5 & 0 \end{bmatrix}$ -13 - (1-8i)(-1-8i)= -13 - (-1 - 64)= -13 + 65 216

Complex Numbers $RREF = \begin{bmatrix} 1 & -1-8i \\ 5 & 5 \end{bmatrix}$ -e) Find a basis for the other eigenspace. $\chi_1 + (-1-8i)\chi_2 = 0 =) \chi_1 = \frac{1+8i}{5}i$ $\overrightarrow{z} = \begin{bmatrix} 1+8i\\5 \end{bmatrix} t$ Basis for $E_{2+8i} = \begin{bmatrix} 1+8i\\-1 \end{bmatrix}$ c) Find a basis for the other eigenspace =2-8i: [A-(2-8i)][]]] $\begin{bmatrix} 1+8i & -13 & 0 \\ 5 & -1+8i & 0 \end{bmatrix}$ $RREF = \begin{bmatrix} 1 & \frac{7}{1+8i} & 0 \\ 0 & \frac{5}{1} & 0 \end{bmatrix}$ $\chi_1 + (-1+8i)\chi_2 =$ -(-1+8i) \Rightarrow χ_1 <u>1-8i</u>t $x = \begin{bmatrix} 1-8i\\ 5 \end{bmatrix} t$ Basis for $E_{7-xi} = \{ \begin{bmatrix} 1-8i \\ -1 \end{bmatrix} \}$ 217