Assignment
Due Mon April 8
Exam
Mon April 15

$$
\begin{aligned}
& 1: 30 \mathrm{pm} \\
& T \in C \quad 174 / 175
\end{aligned}
$$

$\frac{\text { Office Hows }}{\text { Mon isth 12-1pm }}$
Exam Breakdown
Three Hows
15 Questions, with parts

Example: Find the best-fit parabola through:

x	y
1	1
2	-2
3	3
4	4

Let $y=a_{0}+a_{1} x+a_{2} x^{2}$
(a_{0}, a_{1}, a_{2} are the minnows)

$$
\begin{aligned}
& 1\left(a_{0}\right)+x\left(a_{1}\right)+x^{2}\left(a_{2}\right)=y \\
& {\left[\begin{array}{lll}
1 & x & x^{2} \\
1 & 2 & 1 \\
1 & 3 & 4 \\
1 & 4 & 9 \\
1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
y \\
1 \\
-2 \\
3 \\
4
\end{array}\right]} \\
& \vec{x}^{*}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& A^{\top} A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right]=\left[\begin{array}{ccc}
4 & 10 & 30 \\
10 & 30 & 100 \\
30 & 100 & 354
\end{array}\right] \\
& \left(A^{\top} A\right)^{-1}=\frac{1}{20}\left[\begin{array}{ccc}
155 & -135 & 25 \\
-135 & 129 & -25 \\
25 & -25 & 5
\end{array}\right] \\
& \vec{x}^{*}=\frac{1}{20}[\quad]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
12 \\
3 \\
4
\end{array}\right] \\
& =\frac{1}{20}[]\left[\begin{array}{l}
6 \\
22 \\
84
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& y=3-\frac{18}{5} x+x^{2} \\
& {[A \mid I] \sim\left[I \mid A^{-1}\right]} \\
& \text { or adjoint method } \\
& \text { or MATLAB } \\
& \text { octave online } \\
& M=\left[\begin{array}{llll}
4 & 10 & 30 & j
\end{array}\right. \\
& \cdots 30100354] \\
& \text { format rat } \\
& \operatorname{inv}(M)
\end{aligned}
$$

Example: Find the best-fit curve $P=C e^{k t}$ through:

t	P
0	5
1	8
3	12

$$
\begin{aligned}
& \ln P=\ln \left(C e^{k t}\right) \\
& \ln P=\ln C+\ln e^{k t} \\
& \ln P=\ln C+k t
\end{aligned}
$$

$$
\left(A^{\top} A\right)^{-1}=\frac{1}{14}\left[\begin{array}{cc}
10 & -4 \\
-4 & 3
\end{array}\right]
$$

$$
=\frac{1}{14}\left[\begin{array}{cc}
10 & -4 \\
-4 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
\ln 5 \\
\ln 8 \\
\ln 12
\end{array}\right]
$$

Example Continued...

$$
=\frac{1}{14}\left[\begin{array}{ccc}
10 & 6 & -2 \\
-4 & -1 & 5
\end{array}\right]\left[\begin{array}{c}
\ln 5 \\
\ln 8 \\
\ln 12
\end{array}\right]
$$

$C=e^{\ln C} \approx 5$

$$
P=5 e^{0.3 t}
$$

c. Solvable

Recall that $A \vec{x}=\vec{b}$ is consistent if and only if \vec{b} is in $\operatorname{col}(A)$. This follows from Sections 2.3 and 3.5.

Recall that $\operatorname{null}\left(A^{T}\right)=[\operatorname{col}(A)]^{\perp}$. We saw this in Section 5.2.

Example: Derive the formula for \vec{x}^{*} by considering an inconsistent system $A \vec{x}=\vec{b}$.

GILA)

Example Continued...

Complex Numbers
Definition: Let i be the imaginary number such that $i^{2}=-1$.
If a and b are real numbers then $z=a+b i$ is a complex number.
Comment: The symbol i is sometimes written j. You may feel free to use either notation.
Example: Let $z_{1}=-2+6 i$ and $z_{2}=4+5 i$. Calculate:
a) $-7 z_{1}$
$=14-42 i$
b) $z_{1}+z_{2}$
$=2+11 i$
c) $z_{1}-z_{2}$
$=-6+i$

Definition: The complex conjugate of $z=a+b i$ is $\bar{z}=a-b i$.
Example: Let $z=a+b i$. Show that $z \bar{z}=a^{2}+b^{2}$.

$$
\begin{aligned}
z \bar{z} & =(a+b i)(a-b i) \text { red l } \\
& =a^{2}-a b i+a b i-b^{2} i^{2}+b^{2} \\
& =a^{2}+b^{2} \longleftarrow \text { real }
\end{aligned}
$$

Example: Let $z_{1}=4+9 i$ and $z_{2}=-3+5 i$. Calculate:

$$
\begin{aligned}
& =\frac{1}{(4+9 i)} \frac{(4-9 i)}{(4-9 i)} \\
& =\frac{4-9 i}{97} \in a^{2}+b^{2} \\
& =\frac{4}{97}-\frac{9}{97} i \\
& \text { b) } \frac{z_{1}}{z_{2}} \\
& =\frac{(4+9 i)}{(-3+5 i)} \frac{(-3-5 i)}{(-3-5 i)+45} \\
& =\frac{-12-20 i-27 i-45 i^{2}}{34} a^{2}+b^{2} \\
& =\frac{33-47 i}{34} \\
& 207 \text { or } \frac{33}{34}-\frac{47}{34} i
\end{aligned}
$$

Definition: The length of $z=a+b i$ is $|z|=\sqrt{a^{2}+b^{2}}$.
The principal argument of $z=a+b i$ is the angle $\theta=\tan ^{-1}\left(\frac{b}{a}\right)(+\pi$?)
We decide whether to add π or not based on the graph of z.
Example: Let $z=-1+2 i$. Graph z then calculate $|z|$ and θ.

