Example: Suppose $Q^{T} A Q=D$. Solve for A then use the outer product expansion to derive the spectral decomposition.

$$
\begin{aligned}
& Q^{\top} A Q=D \\
& \begin{aligned}
Q^{\top} A Q & =Q D \\
A Q & =Q D
\end{aligned} \\
& A Q Q^{\top}=Q \Delta Q^{\top} \\
& A=Q D Q
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\ldots+\lambda_{n} \vec{q}_{q} \vec{q}_{n}^{\top}
\end{aligned}
$$

7.3 Least Squares Approximation

Recall that a system $A \vec{x}=\vec{b}$ may be inconsistent.

Definition: Given an approximate solution \vec{s}, the error vector is $\vec{b}-A \vec{s}$ and the error is $\|\vec{b}-A \vec{s}\|$.

Definition: The least squares solution \vec{x}^{*} is the approximate solution with the minimum error.

Comment: Recall that $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$. The terminology least squares solution emphasizes that we're making the length of the error vector as small as possible.

Fact: The least squares solution to a system $A \vec{x}=\vec{b}$ is $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$.

Comment: We'll assume that the columns of A are linearly independent so that $\left(A^{T} A\right)^{-1}$ exists.

Example: The system $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ is inconsistent. Find the least squares solution \vec{x}^{*}.

$$
\begin{aligned}
\vec{x}^{*} & =\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
A^{\top} A & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 \\
1 & 2
\end{array}\right] \\
\left(A^{\top} A\right)^{-1} & =\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \\
\vec{x} & =\left(A^{\top} A\right)^{-1} A A^{\top} \\
& =\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
7 \\
8
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
6 \\
9
\end{array}\right]
\end{aligned}
$$

Example: Calculate the error for \vec{x}^{*} above. What can you say about the error for any other vector \vec{x} ?

$$
\begin{aligned}
\text { error } & =\left\|\vec{b}-A \vec{x}^{*}\right\| \\
\vec{b}-A \vec{x}^{*} & =\left[\begin{array}{c}
1 \\
2 \\
b
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
2 \\
3 \\
5
\end{array}\right] \\
& {\left[\begin{array}{l}
-1 \\
1 \\
1
\end{array}\right] \quad \text { For any other } \vec{x}, }
\end{aligned} \quad \begin{gathered}
\text { error }=\left\|\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right\|=\sqrt{3} \quad \text { error }>\sqrt{3}
\end{gathered}
$$

Example: Find the best-fit line $y=a_{0}+a_{1} x$ The best-fit line is also called the least squares regression line | x | y |
| :---: | :---: |
| 0 | 4 |
| 1 | 1 |

1	1
2	0

$a_{0}, a_{\text {, }}$ are the unknowns

$$
\begin{aligned}
& a_{0}+a_{1} x=y \\
& 1\left(a_{0}\right)+x a_{1}=y \\
& {\left[\begin{array}{ll}
1 & x \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
4^{y} \\
1 \\
0
\end{array}\right]} \\
& A^{\top} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right] \\
& \left(A^{\top} A\right)^{-1}=\frac{1}{6}\left[\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right] \\
& \vec{x}^{*}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& =\frac{1}{6}\left[\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
1
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{l}
22 \\
-12
\end{array}\right] \stackrel{200}{\leftarrow} \stackrel{a_{0}}{ }=\frac{22}{6}=\frac{11}{3} \quad \begin{array}{l}
y=\frac{11}{6}-2 x \\
\end{array}
\end{aligned}
$$

