Example: Approximating the eigenvalues of A. This example will not be tested.
Consider the following procedure:
Find $A=Q_{0} R_{0}$.
Let $A_{1}=R_{0} Q_{0}$ then find $A_{1}=Q_{1} R_{1}$.
Let $A_{2}=R_{1} Q_{1}$ then find $A_{2}=Q_{2} R_{2}$ etc.
Each matrix A_{k} has the same eigenvalues as A.
As $k \rightarrow \infty, A_{k}$ becomes upper triangular.

Suppose we start with matrix A and produce $A_{4}=\left[\begin{array}{ll}1.98 & 2.52 \\ 0.03 & 7.01\end{array}\right]$.
a) Does A_{4} have the same eigenvalues as A ?

b) Is A_{4} approximately upper triangular?

c) Estimate the eigenvalues of A.

5.4 Orthogonal Diagonalization

Recall that if Q is orthogonal then $Q^{-1}=Q^{T}$.

Definition: An $n \times n$ matrix A is orthogonally diagonalizable if there exist an orthogonal matrix Q and a diagonal matrix D so that $Q^{T} A Q=D$.

Fact: Let A be an $n \times n$ matrix. The matrix A is orthogonally diagonalizable if and only if A is symmetric.

Example: Is A orthogonally diagonalizable?
a) $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right]$

$$
\begin{aligned}
& A^{\top}=A \\
& \text { Yes }
\end{aligned}
$$

b) $A=\left[\begin{array}{cc}3 & -4 \\ 4 & 3\end{array}\right]$

Example: The matrix $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$ has eigenvalues $\lambda=4$ and $\lambda=7$.
Find Q that orthogonally diagonalizes A.
To find Q : find an orthonormal basis for each eigespace.

$$
\begin{aligned}
& \lambda=7: \quad[A-7 I \mid \overrightarrow{0}] \\
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& \begin{array}{c}
\leadsto\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { REF } \\
x_{3}=t
\end{array} \\
& x_{1}-x_{3}=0 \Rightarrow x_{1}=t \\
& x_{2}-x_{3}=0 \Rightarrow x_{2}=t
\end{aligned}
$$

$\vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] t \quad$ a basis for $E_{7}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
An orthonormal basis for $E_{7}=\left[\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$

$$
\begin{array}{ll}
\lambda=4: \quad & {[A-4 I \mid c} \\
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]}
\end{array}
$$

Example Continued...

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R R \in F} \\
\uparrow \\
x_{2}=A
\end{gathered} x_{3}=t .
$$

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \Delta+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] t \quad A \quad \text { basis for } E_{4}=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

Gram -Schmidt
Partial Basis $X=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$

$$
\begin{aligned}
\vec{v}_{2} & =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\operatorname{proj} \times\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
2 \vec{v}_{2} & =2\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-1\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Orthogonal Basis for $E_{4}=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]\right\}$
Orthonormal

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right]
$$

$$
=\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]\right\}
$$

To check:

$$
Q^{\top} A Q=\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

We're going to recap the outer product expansion of $A B$ from Section 3.1.
Example: Find $\left[\begin{array}{l|l}1 & 2 \\ 3 & 4\end{array}\right] \frac{\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]}{}$ using the outer product expansion.

$$
\begin{aligned}
& =\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{ll}
5 & 6
\end{array}\right]+\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
7 & 8
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 & 6 \\
15 & 18
\end{array}\right]+\left[\begin{array}{ll}
14 & 16 \\
28 & 32
\end{array}\right] \\
& =\left[\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

Example: Find $\left[\begin{array}{c|c}-1 & 9 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$ using the outer product expansion.

$$
\begin{aligned}
& =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\left[\begin{array}{ll}
4 & 3
\end{array}\right]+\left[\begin{array}{c}
9 \\
3
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-4 & -3 \\
8 & 6
\end{array}\right]+\left[\begin{array}{cc}
18 & 9 \\
6 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
14 & 6 \\
14 & 9
\end{array}\right]
\end{aligned}
$$

Definition: Let A be a symmetric $n \times n$ matrix. Let $\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{n}$ be orthonormal eigenvectors written as columns.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the corresponding eigenvalues.
The spectral decomposition of A is:

$$
A=\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{T}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{T}+\ldots+\lambda_{n} \vec{q}_{n} \vec{q}_{n}^{T}
$$

Example: Find a 3×3 matrix A with eigenvalues $\lambda=2$ and $\lambda=3$ so that:

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right) \text { and } E_{3}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\right)
$$

Orthogonal eigenvector
 $\lambda_{1}=2, \quad \lambda_{2}=2, \quad \lambda_{3}=3$

$$
A=\lambda_{1} \vec{q}_{1} \vec{q}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\lambda_{3} \vec{q}_{3} \vec{q}_{3}^{\top}
$$

$$
=\frac{2 \frac{1}{(2)}}{\left(\frac{2}{3}\right)^{3} \sqrt{3}}\left[\begin{array}{lll}
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+\frac{2}{\sqrt{2} \cdot \sqrt{2}}\left[\begin{array}{ccc}
-1 \\
-1
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
&+\frac{3}{\sqrt{6}} \cdot \sqrt{6}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & -2
\end{array}\right] \\
&=\frac{4}{6}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
&+\frac{3}{6}\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 1 & -2 \\
-2 & -2 & 4
\end{array}\right]
\end{aligned}
$$

Example Continued...

$$
\begin{array}{rlr}
=\frac{1}{6}\left[\begin{array}{ccc}
13 & 1 & -2 \\
1 & 13 & -2 \\
-2 & -2 & 16
\end{array}\right] \leftharpoonup \text { symmetric } \\
\text { Check: } & A\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] & =2\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \\
A\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] & =2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
A\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] & =3\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
\end{array}
$$

