Example: Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & 0 \end{bmatrix}$$
 and let $W = \operatorname{col}(A)$. Find a basis for W^{\perp} .

 $W = SPAN \left(\begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \end{bmatrix} \right)$

Solve
 $X = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 0 \\ 3 & 4 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0$

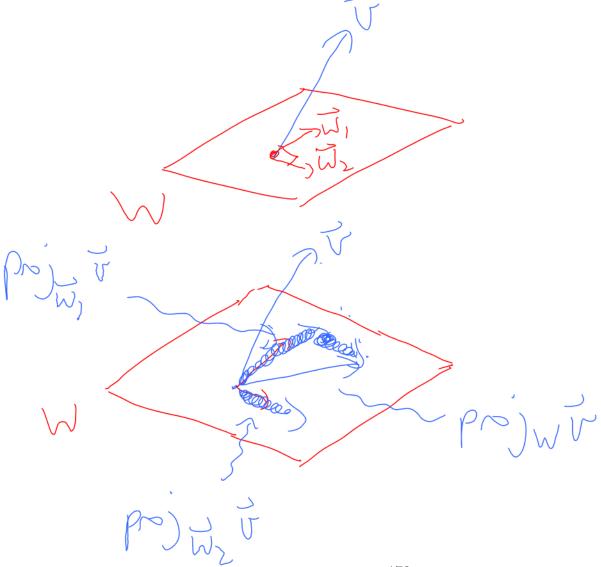
Fact: For any matrix A, $[col(A)]^{\perp} = null(A^T)$.

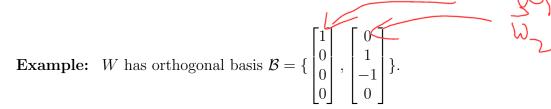
Definition: Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$. The **orthogonal projection of** \vec{v} onto W is:

$$\operatorname{proj}_W \vec{v} = \operatorname{proj}_{\vec{w}_1} \vec{v} + \operatorname{proj}_{\vec{w}_2} \vec{v} + \ldots + \operatorname{proj}_{\vec{w}_k} \vec{v}.$$

Comment: This formula only applies when the basis for W is **orthogonal**.

Example: Let W be a plane through the origin in \mathbb{R}^3 . Let \vec{v} be a vector in \mathbb{R}^3 that does not lie in W. Sketch W, \vec{v} and $\text{proj}_W \vec{v}$.





Find the orthogonal projection of
$$\vec{v} = \begin{bmatrix} 1 \\ 5 \\ -3 \\ 7 \end{bmatrix}$$
 onto W .

Find the orthogonal projection of
$$\vec{v} = \begin{bmatrix} 1 \\ 5 \\ -3 \\ 7 \end{bmatrix}$$
 onto W .

$$=\frac{1}{1}\begin{bmatrix}1\\0\\0\\0\end{bmatrix}+\frac{8}{2}\begin{bmatrix}0\\1\\-1\\0\end{bmatrix}$$

$$=\begin{bmatrix}1\\0\\0\end{bmatrix}+4\begin{bmatrix}0\\-1\\0\end{bmatrix}$$

Definition: The **orthogonal decomposition** of \vec{v} with respect to W is:

 $\vec{v} = \operatorname{proj}_W \vec{v} + \operatorname{perp}_W \vec{v}$

where $\operatorname{proj}_W \vec{v}$ is in W and $\operatorname{perp}_W \vec{v}$ is in W^{\perp} .

"perp with respect to Wot ?"

Example: Let W be a plane through the origin in \mathbb{R}^3 . Let \vec{v} be a vector in \mathbb{R}^3 that does not lie in W. Sketch W, \vec{v} , $\operatorname{proj}_W \vec{v}$ and $\operatorname{perp}_W \vec{v}$.

Perpw V

Projwv

Example: W has orthogonal basis
$$\mathcal{B} = \{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \}.$$

Find the orthogonal decomposition of $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$ with respect to W.

$$\frac{1}{2} = \frac{14}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{14}{9} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$

$$= \frac{18}{9} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{14}{9} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

V= Projw v + Perpw v Perpw v = V - Projw v 181 = 9[5] - 9[5] = 9[5] 5]