Test 3 FRI MARZZ 3.4-3.6, 4.1-4.2

Definition: An orthogonal matrix Q is an $n \times n$ matrix whose columns form an orthonormal set. For example, the following matrix is orthogonal:

Fact: A square matrix Q is orthogonal if and only if $Q^T Q = I$.

Example: Verify that
$$Q^T Q = I$$
 for $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $Q^T Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Ones indicate columns of Q
Nave length 1
Zeros indicate columns of R
are orthogonal

Fact: If Q is orthogonal then $Q^{-1} = Q^T$.

Example: Let Q be an orthogonal matrix. Show that Q^{-1} is orthogonal.

Example: Determine all values of x, y and z	z so that $\begin{bmatrix} \frac{1}{2} & y \\ x & z \end{bmatrix}$ is an orthogonal matrix.
$\left \begin{bmatrix} \frac{1}{2} \\ x \end{bmatrix} \right = 1$	
$\sqrt{\frac{1}{4} + \chi^2} = 1$	
$\frac{1}{4} + x^2 = 1$ $x^2 = \frac{3}{4}$	
$\mathcal{L} = \pm \sqrt{\frac{3}{4}}$	
$\chi = \pm \frac{\sqrt{3}}{2}$	
If the 1st Glumn is [are 2 options for	b] then there 2nd column:
[-b] [b] [b]	$7(-\sqrt{5} + \frac{1}{2}) + \frac{1}{2} + 1$
$\left[\begin{bmatrix} a \\ b \end{bmatrix} \right]$	
have length 1)	$y_{1} = -\frac{\sqrt{3}}{2} : \frac{1}{2} \begin{bmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & -1 \end{bmatrix}$

5.2 Orthogonal Complements and Projections

Throughout Chapter 5, W will represent a subspace of \mathbb{R}^n . Rephrased: W is the span of one or more vectors in \mathbb{R}^n .

Recall that the **dimension** of a subspace W is the number of vectors in a basis for W.

(Section 3.5)

Example: Let
$$W = \operatorname{span}\left(\begin{bmatrix} 1\\4\\3\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}\right)$$
. Find the dimension of W and W^{\perp} .
Not multiples
dim $W = 2$
dim $W + \dim W^{\perp} = 5$
dim $W^{\perp} = 3$

Example: Let $W = \{ \begin{vmatrix} x \\ y \end{vmatrix}$ such that $3x + y = 0 \}$. Find a basis for W and for W^{\perp} . 2 points on W = P = (0,0) Q = (1, -3)Direction vector for W: d= PQ = [-3] A basis for $W = \{ [-3] \}$ $\begin{array}{c} x \quad y \\ \hline 1 \quad -3 \\ y = t \\ \chi - 3y = 0 \implies \chi = 3t \end{array}$ $\vec{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} t$ A basis for $W^{\perp} = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$

Example: Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6 \end{bmatrix}$$
 and let $W = \operatorname{row}(A)$. Find a basis for W^{\perp} .
 $W = \operatorname{span} \left(\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6 \end{bmatrix} \right)$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} x \xrightarrow{1} y$
 $Solve \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6 \end{bmatrix} \right)$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} x \xrightarrow{1} y$
 $Solve \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6 \end{bmatrix} \right)$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} x \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y$
 $A_{\perp} \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y \xrightarrow{1} y$
 $M \xrightarrow{1} x \xrightarrow{1} y \xrightarrow{1}$

Fact: For any matrix A, $[row(A)]^{\perp} = null(A)$.