$$
\begin{aligned}
& \frac{\text { Test } 3}{\text { FRI MAR } 22} \\
& 3.4-3.6,4.1-4.2
\end{aligned}
$$

Definition: An orthogonal matrix Q is an $n \times n$ matrix whose columns form an orthongranal set For example, the following matrix is orthogonal:

$$
Q=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
0
\end{array}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]^{-\frac{1}{\sqrt{2}}} \begin{array}{c}
-\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \|=\sqrt{\frac{1}{2}+\frac{1}{2}+0}=1
$$

Fact: A square matrix Q is orthogonal if and only if $Q^{T} Q=I$.

Example: Verify that $Q^{T} Q=I$ for $Q=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right]$.

Fact: If Q is orthogonal then $Q^{-1}=Q^{T}$.

Example: Prove the fact above.

Example: Let Q be an orthogonal matrix. Show that Q^{-1} is orthogonal.

$$
\begin{aligned}
& \text { To show } M_{\text {Ul }} \text { is orthogonal: } Q^{-1} M^{\top} M=I \\
& \\
& \begin{aligned}
\left(Q^{-1}\right)^{\top} Q^{-1} & =\left(Q^{-1}\right)^{\top} Q^{-1}=I \\
& =Q Q^{-1} Q^{-1} \quad(Q \text { isolloporal }) \\
& =I
\end{aligned}
\end{aligned}
$$

Example: Determine all values of x, y and z so that $\left[\begin{array}{ll}\frac{1}{2} & y \\ x & z\end{array}\right]$ is an orthogonal matrix.

$$
\begin{aligned}
& 11\left[\begin{array}{l}
\frac{1}{2} \\
x
\end{array}\right] \|=1 \\
& \sqrt{\frac{1}{4}+x^{2}}=1 \\
& \frac{1}{4}+x^{2}=1 \\
& x^{2}=\frac{3}{4} \\
& x= \pm \sqrt{\frac{3}{4}} \\
& x= \pm \frac{\sqrt{3}}{2} \\
& \begin{array}{l}
\text { If the } 1^{\text {st }} \text { column is }\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { then there } \\
\text { are } 2 \text { options fo } 2^{\text {nh }} \text { column: }
\end{array} \\
& {\left[\begin{array}{c}
-b \\
a
\end{array}\right]} \\
& \text { (all vectors } \\
& \text { have length 1) } \\
& \begin{array}{l}
x=\frac{\sqrt{3}}{2}: \frac{1}{2}\left[\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right] \\
x=-\frac{\sqrt{3}}{2}: \frac{1}{2}\left[\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array}\right]
\end{array}
\end{aligned}
$$

5.2 Orthogonal Complements and Projections

Throughout Chapter $5, W$ will represent a subspace of \mathbb{R}^{n}. Rephrased: W is the span of one or more vectors in \mathbb{R}^{n}.

Definition: The orthogonal complement of W is: $W^{\perp}=\left\{\vec{v}\right.$ in \mathbb{R}^{n} such that $\vec{v} \cdot \vec{w}=0$ for all \vec{w} in $\left.W\right\}$. W^{\perp} is pronounced "W perp".

$\xrightarrow{\text { Example: }}$ Let $W=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]\right)$. Find W^{\perp}.

$$
\begin{aligned}
& \begin{aligned}
& W^{\perp}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right. \\
& \text { such that }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=0 \\
&\left.=\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]=0\right\} \\
&=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \operatorname{such} \text { that } x=0 \text { and } x+y+3 z=0\right\}
\end{aligned} \\
& \text { Shortart Solve }\left[\left.\begin{array}{cc|c}
x & y & z \\
1 & 0 & 0 \\
\hline 1 & 1 & 3
\end{array} \right\rvert\, 0\right] \\
& \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 3 & 0
\end{array}\right] \quad \operatorname{RREF} \\
& z=t \\
& x=0 \\
& \left.\left.\vec{x}=\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right] t \quad W^{y}=\operatorname{span}\left(\begin{array}{c}
1 \\
0 \\
-3 \\
1 \\
173
\end{array}\right]\right) \text { A basistor } w^{+}=\left\{\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Recall that the dimension of a subspace W is the number of vectors in a basis for W.

$$
\text { (Section } 3.5 \text {) }
$$

Three Facts about W^{\perp}
For any subspace W of \mathbb{R}^{n} :

1) $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
2) $W \cap W^{\perp}=\{\overrightarrow{0}\}$
3) $\left(W^{\perp}\right)^{\perp}=W$

Example: Let $W=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]\right)$. Find the dimension of W and W^{\perp}.
not multiples
aim $w=2$
din $w+$ dim $w^{\perp}=5$

$$
\operatorname{dim} w^{1}=3
$$

Example: Let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ such that $\left.3 x+y=0\right\}$. Find a basis for W and for W^{\perp}.
2 points on W : $\quad P=(0,0) \quad Q=(1,-3)$
Direction vector for W : $\vec{d}=\overrightarrow{P Q}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
A basis for $W=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$

w^{+}

$$
\begin{aligned}
& {\left[\begin{array}{cc}
x-y \\
1 & -3 \\
1 & 0
\end{array}\right]} \\
& y=t \\
& x-3 y=0 \Rightarrow x=3 t \\
& \vec{x}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] t
\end{aligned}
$$

A basis for $\left.\omega^{\perp}=\left\{\begin{array}{l}3 \\ 175\end{array}\right]\right\}$

Example: Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 4 \\ 0 & 1 & 1 & 6\end{array}\right]$ and let $W=\operatorname{row}(A)$. Find a basis for W^{\perp}.

$$
\begin{aligned}
& \xrightarrow{C} \\
& W=\operatorname{span}\left(\left[\begin{array}{llll}
1 & 0 & 0 & 4
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & b
\end{array}\right]\right) \\
& \text { Solve }\left[\begin{array}{c|c}
\frac{x_{1} x_{2}}{\frac{1}{10} x_{3}} \begin{array}{l}
1 \\
\frac{01}{011} \\
0
\end{array} & 0
\end{array}\right] \text { REF } \\
& x_{3}=s \quad x_{4}=t \\
& x_{1}+4 x_{4}=0 \Rightarrow x_{1}=-4 t \\
& x_{2}+x_{3}+6 x_{4}=0 \Rightarrow x_{2}=-2-6 t \\
& \begin{array}{l}
\vec{x}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-4 \\
-6 \\
0 \\
1
\end{array}\right] t \\
\text { sis for } \omega^{\perp}=\left\{\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
-6 \\
0 \\
1
\end{array}\right]\right\}
\end{array} \\
& \text { More tonally: } W^{+}=\left\{\begin{array}{l}
\vec{x} \text { such that } \vec{x} \text { is orthogonal } \\
\text { to each now of } A
\end{array}\right\} \\
& =\left\{\vec{x} \text { such that }\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
0 & 1 & 1 & b
\end{array}\right] \vec{x}=\overrightarrow{0}\right\} \\
& =\text { nul\\
(A) }
\end{aligned}
$$

Fact: For any matrix $A,[\operatorname{row}(A)]^{\perp}=\operatorname{null}(A)$.

